Advertisement

Preliminaries

  • Viorel Barbu
Chapter
  • 447 Downloads
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 90)

Abstract

Here we survey for later use some basic existence results for the infinite dimensional Cauchy problem, semilinear parabolic-like boundary value problems, and infinite dimensional control systems.

References

  1. 17.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976)Google Scholar
  2. 18.
    Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic, Boston (1993)Google Scholar
  3. 19.
    Barbu, V.: Mathematical Methods in Optimization of Differential System. Kluwer, Dordrecht (1994)Google Scholar
  4. 26.
    Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New York (2010)Google Scholar
  5. 51.
    Bensoussan, A., Da Prato, G., Delfour, M.C., Milter, S.K.: Representation and Control of Infinite Dimensional Systems. Systems & Control Foundations & Applications, vol. I. Birkhäuser, Boston (2005)Google Scholar
  6. 54.
    Brezis, H.: Opérateurs Maximaux Monotones et semigroupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973)Google Scholar
  7. 55.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)Google Scholar
  8. 104.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)Google Scholar
  9. 109.
    Russell, D.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)Google Scholar
  10. 113.
    Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983)Google Scholar
  11. 116.
    Tucsnak, M., Weiss, G.: Observations and Control for Operator Semigroups. Birkhäuser, Basel (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Viorel Barbu
    • 1
  1. 1.A1. I CUZA UNIVERSITYIASIRomania

Personalised recommendations