Advertisement

Fundamental Properties of III-Nitride Surfaces

  • Toru Akiyama
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 269)

Abstract

The control of growth conditions is one of the important factors for fabricating high-quality crystals and would be achieved through the understanding of surface reconstructions. It is well known that reconstructed structures appear on the growth front (surfaces) of semiconductor materials, so that investigations for the reconstructions on III-nitride surfaces are necessary from theoretical viewpoints taking growth conditions into account.

References

  1. 1.
    D.K. Biegelsen, R.D. Bringans, J.E. Northrup, L.-E. Swartz, Reconstructions of GaAs(\(\bar{1}\bar{1}\bar{1}\)) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990)CrossRefGoogle Scholar
  2. 2.
    T. Ohno, Energetics of as dimers on GaAs(001) as-rich surfaces. Phys. Rev. Lett. 70, 631 (1993)CrossRefGoogle Scholar
  3. 3.
    J.E. Northrup, S. Froyen, Energetics of GaAs(100)–(2 × 4) and –(4 × 2) reconstructions. Phys. Rev. Lett. 71, 22 (1993)CrossRefGoogle Scholar
  4. 4.
    A. Kley, N. Moll, E. Pehlke, M. Scheffler, GaAs equilibrium crystal shape from first principles. Phys. Rev. B 54, 8844 (1996)CrossRefGoogle Scholar
  5. 5.
    J.E. Northrup, J. Neugebauer, R.M. Feenstra, A.R. Smith, Structure of GaN(0001): the laterally contracted Ga bilayer model. Phys. Rev. B 61, 9932 (2000)CrossRefGoogle Scholar
  6. 6.
    A. Ishii, First-principles study for molecular beam epitaxial growth of GaN(0001). Appl. Surf. Sci. 216, 447 (2003)CrossRefGoogle Scholar
  7. 7.
    Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, T. Ohachi, A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces. Surf. Sci. 493, 178 (2001)CrossRefGoogle Scholar
  8. 8.
    T. Ito, H. Ishizaki, T. Akiyama, K. Nakamura, An ab initio-based approach to phase diagram calculations for GaAs(001) surfaces. e-J. Surf. Sci. Nanotech. 3, 488 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Tatematsu, K. Sano, T. Akiyama, K. Nakamura, T. Ito, Ab initio-based approach to initial growth processes on GaAs(111)B-(2 × 2) surfaces: self-surfactant effect of Ga adatoms revisited. Phys. Rev. B 77, 233306 (2008)CrossRefGoogle Scholar
  10. 10.
    T. Ito, N. Ishimure, T. Akiyama, K. Nakamura, Ab initio-based approach to adsorption–desorption behavior on the InAs(111)A heteroepitaxially grown on GaAs substrate. J. Cryst. Growth 318, 72 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Kangawa, Y. Matsuo, T. Akiyama, T. Ito, K. Shiraishi, K. Kakimoto, Theoretical approach to initial growth kinetics of GaN on GaN(001). J. Cryst. Growth 300, 62 (2007)CrossRefGoogle Scholar
  12. 12.
    T. Ito, T. Akiyama, K. Nakamura, Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth. J. Cryst. Growth 311, 698 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Yamashita, T. Akiyama, K. Nakamura, T. Ito, Surface reconstructions on GaN and InN semipolar \(\left( {11\bar{2}2} \right)\) surfaces. Jpn. J. Appl. Phys. 48, 120201 (2009)CrossRefGoogle Scholar
  14. 14.
    T. Ito, T. Akiyama, K. Nakamura, An ab initio-based approach to the stability of GaN(0001) surfaces under Ga-rich conditions. J. Cryst. Growth 311, 3093 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi, K. Kakimoto, Theoretical approach to structural stability of GaN: how to grow cubic GaN. J. Cryst. Growth 311, 3106 (2009)CrossRefGoogle Scholar
  16. 16.
    T. Akiyama, D. Ammi, K. Nakamura, T. Ito, Reconstructions of GaN and InN semipolar \(\left( {10\bar{1}\bar{1}} \right)\) surfaces. Jpn. J. Appl. Phys. 48, 100201 (2009)Google Scholar
  17. 17.
    T. Akiyama, D. Ammi, K. Nakamura, T. Ito, Surface reconstruction and magnesium incorporation on semipolar GaN\(\left( {1\bar{1}01} \right)\) surfaces. Phys. Rev. B 81, 245317 (2010)Google Scholar
  18. 18.
    T. Akiyama, T. Yamashita, K. Nakamura, T. Ito, Stability of hydrogen on nonpolar and semipolar nitride surfaces: role of surface orientation. J. Cryst. Growth 318, 79 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Ito, T. Akiyama, K. Nakamura, Ab initio-based approach to reconstruction, adsorption and incorporation on GaN surfaces. Semicond. Sci. Technol. 27, 024010 (2012)CrossRefGoogle Scholar
  20. 20.
    T. Akiyama, D. Obara, K. Nakamura, T. Ito, Reconstructions on AlN polar surfaces under hydrogen rich conditions. Jpn. J. Appl. Phys. 51, 018001 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Akiyama, Y. Saito, K. Nakamura, T. Ito, Reconstructions on AlN nonpolar surfaces in the presence of hydrogen. Jpn. J. Appl. Phys. 51, 048002 (2012)CrossRefGoogle Scholar
  22. 22.
    T. Akiyama, K. Nakamura, T. Ito, Ab initio-based study for adatom kinetics on AlN(0001) surfaces during metal-organic vapor-phase epitaxy growth. Appl. Phys. Lett. 100, 251601 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi, T. Nakayama, Surface stability and growth kinetics of compound semiconductors: an ab initio-based approach. Materials 6, 3309 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Takemoto, T. Akiyama, K. Nakamura, T. Ito, Systematic theoretical investigations on surface reconstruction and adatom kinetics on AlN semipolar surfaces. e-J. Surf. Sci. Nanotech. 13, 239 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Takemoto, T. Akiyama, K. Nakamura, T. Ito, Ab initio-based study for surface reconstructions and adsorption behavior on semipolar AlN\(\left( {11\bar{2}2} \right)\) surfaces during metal-organic vapor-phase epitaxy growth. Jpn. J. Appl. Phys. 54, 0875502 (2015)Google Scholar
  26. 26.
    T. Akiyama, Y. Takemoto, K. Nakamura, T. Ito, Theoretical investigations of initial growth processes on semipolar AlN\(\left( {11\bar{2}2} \right)\) surfaces under metal–organic vapor-phase epitaxy growth condition. Jpn. J. Appl. Phys. 55, 05FA06 (2016)CrossRefGoogle Scholar
  27. 27.
    C.G. Van de Walle, J. Neugebauer, First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 88, 066103 (2002)CrossRefGoogle Scholar
  28. 28.
    H. Shu, X. Chen, R. Dong, X. Wang, W. Lu, Thermodynamic phase diagram for hydrogen on polar InP(111)B surfaces. J. Appl. Phys. 107, 063516 (2010)CrossRefGoogle Scholar
  29. 29.
    K. Yamada, N. Inoue, J. Osaka, K. Wada, In situ observation of molecular beam epitaxy of GaAs and AlGaAs under deficient As4 flux by scanning reflection electron microscopy. Appl. Phys. Lett. 55, 622 (1989)CrossRefGoogle Scholar
  30. 30.
    T. Kojima, N.J. Kawai, T. Nakagawa, K. Ohta, T. Sakamoto, M. Kawashima, Layer-by-layer sublimation observed by reflection high-energy electron diffraction intensity oscillation in a molecular beam epitaxy system. Appl. Phys. Lett. 47, 286 (1985)Google Scholar
  31. 31.
    E.M. Gibson, C.T. Foxon, J. Zhang, B.A. Joyce, Gallium desorption from GaAs and (Al, Ga)As during molecular beam epitaxy growth at high temperatures. Appl. Phys. Lett. 57, 1203 (1990)CrossRefGoogle Scholar
  32. 32.
    J.E. Northrup J. Neugebauer, Theory of GaN\(\left( {10\bar{1}0} \right)\) and \(\left( {11\bar{2}0} \right)\) surfaces. Phys. Rev. B 53, R10477 (1996)Google Scholar
  33. 33.
    A.R. Smith, R.M. Feenstra, D.W. Greve, J. Neugebauer, J.E. Northrup, Reconstructions of the GaN(0001) surface. Phys. Rev. Lett. 79, 3934 (1997)CrossRefGoogle Scholar
  34. 34.
    J.E. Northrup, R. Di Felice, J. Neugebauer, Atomic structure and stability of AlN(0001) and \((000\bar{1})\) surfaces. Phys. Rev. B 55, 13878 (1997)Google Scholar
  35. 35.
    J. Fritsch, O.F. Sankey, K.E. Schmidt, J.B. Page, Ab initio calculation of the stoichiometry and structure of the (0001) surfaces of GaN and AlN. Phys. Rev. B 57, 15360 (1998)CrossRefGoogle Scholar
  36. 36.
    C.D. Lee, Y. Dong, R.M. Feenstra, J.E. Northrup, J. Neugebauer, Reconstructions of the AlN(0001) surface. Phys. Rev. B 68, 205317 (2003)CrossRefGoogle Scholar
  37. 37.
    C.K. Gan, D.J. Srolovitz, First-principles study of wurtzite InN(0001) and \(\left( {000\bar{1}} \right)\) surfaces. Phys. Rev. B 74, 115319 (2006)Google Scholar
  38. 38.
    D. Segev, C.G. van de Walle, Surface reconstructions on InN and GaN polar and nonpolar surfaces. Surf. Sci. 601, L15 (2007)CrossRefGoogle Scholar
  39. 39.
    H. Suzuki, R. Togashi, H. Murakami, Y. Kumagai, A. Koukitu, Theoretical analysis for surface reconstruction of AlN and InN in the presence of hydrogen. Jpn. J. Appl. Phys. 46, 5112 (2007)CrossRefGoogle Scholar
  40. 40.
    M.S. Miao, A. Janotti, C.G. van de Walle, Reconstructions and origin of surface states on AlN polar and nonpolar surfaces. Phys. Rev. B 80, 155319 (2009)CrossRefGoogle Scholar
  41. 41.
    M.D. Pashley, K.W. Haberern, W. Friday, J.M. Woodall, P.D. Kirchner, Structure of GaAs(001) (2 × 4)-c(2 × 8) determined by scanning tunneling microscopy. Phys. Rev. Lett. 60, 2176 (1998)CrossRefGoogle Scholar
  42. 42.
    F. Bernardini, V. Fiorentini, Macroscopic polarization and band offsets at nitride heterojunctions. Phys. Rev. B 57, R9427 (1997)CrossRefGoogle Scholar
  43. 43.
    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)CrossRefGoogle Scholar
  44. 44.
    K. Nishizuka, M. Funato, Y. Kawakami, S. Fujita, Y. Narukawa, T. Mukai, Efficient radiative recombination from \(11\bar{2}2\)-oriented InxGa1−xN multiple quantum wells fabricated by the regrowth technique, Appl. Phys. Lett. 85, 3122 (2004)CrossRefGoogle Scholar
  45. 45.
    K. Nishizuka, M. Funato, Y. Kawakami, Y. Narukawa, T. Mukai, Efficient rainbow color luminescence from InxGa1−xN single quantum wells fabricated on {11\(\bar{2}\)2} microfacets. Appl. Phys. Lett. 87, 231901 (2005)CrossRefGoogle Scholar
  46. 46.
    R. Sharma, P.M. Pattison, H. Masui, R. M. Farrel, T.J. Baker, B.A. Haskell, F. Wu, S.P. DenBaars, J.S. Speck, S. Nakamura, Demonstration of a semipolar \(\left( {10\bar{1}\bar{3}} \right)\) InGaN/GaN green light emitting diode, Appl. Phys. Lett. 87, 231110 (2005)Google Scholar
  47. 47.
    T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on spinel substrates. Jpn. J. Appl. Phys. 44, L920 (2005)CrossRefGoogle Scholar
  48. 48.
    A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Milliwatt power blue InGaN/GaN light-emitting diodes on semipolar GaN templates. Jpn. J. Appl. Phys. 44, L945 (2005)CrossRefGoogle Scholar
  49. 49.
    M. Funato, T. Kotani, T. Kondou, Y. Kawakami, Y. Narukawa, T. Mukai, Tailored emission color synthesis using microfacet quantum wells consisting of nitride semiconductors without phosphors. Appl. Phys. Lett. 88, 261920 (2006)CrossRefGoogle Scholar
  50. 50.
    M. Ueda, K. Kojima, M. Funato, Y. Kawakami, Y. Narukawa, T. Mukai, Epitaxial growth and optical properties of semipolar \(\left( {11\bar{2}2} \right)\) GaN and InGaN/GaN quantum wells on GaN bulk substrates. Appl. Phys. Lett. 89, 211907 (2006)CrossRefGoogle Scholar
  51. 51.
    J. Stellmach, M. Frentrup, F. Mehnke, M. Pristovsek, T. Wernicke, M. Kneissl, MOVPE growth of semipolar \(\left( {11\bar{2}2} \right)\) AlN on m-plane \(\left( {10\bar{1}0} \right)\) sapphire. J. Cryst. Growth 355, 59 (2012)Google Scholar
  52. 52.
    Q.K. Xue, Q.Z. Xue, R.Z. Bakhtizin, Y. Hasegawa, I.S.T. Tsong, T. Sakurai, T. Ohno, Structures of GaN(0001)–(2 × 2), –(4 × 4), and –(5 × 5) surface reconstructions. Phys. Rev. Lett. 82, 3074 (1999)CrossRefGoogle Scholar
  53. 53.
    A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, GaN(0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations. Surf. Sci. 423, 70 (1999)CrossRefGoogle Scholar
  54. 54.
    M.H. Xie, L.X. Zheng, X.Q. Dai, H.S. Wu, S.Y. Tong, A model for GaN ghost islands. Surf. Sci. 558, 195 (2004)CrossRefGoogle Scholar
  55. 55.
    V. Ramachandran, C.D. Lee, R.M. Feenstra, A.R. Smith, J.E. Northrup, D.W. Greve, Structure of clean and arsenic-covered GaN(0001) surfaces. J. Cryst. Growth 209, 355 (2000)CrossRefGoogle Scholar
  56. 56.
    R.M. Feenstra, J.E. Northrup, J. Neuegbauer, Review of structure of bare and adsorbate-covered GaN(0001) surfaces. MRS Internet J. Nitride Semicond. Res. 1, 1234 (2002)Google Scholar
  57. 57.
    S. Vézian, F. Semond, J. Massies, D.W. Bullock, Z. Ding, P.M. Thibado, Origins of GaN(0001) surface reconstructions. Surf. Sci. 541, 242 (2003)CrossRefGoogle Scholar
  58. 58.
    L. Lahourcade, J. Renard, B. Gayral, E. Monroy, M.P. Chaivat, P. Ruterana, Ga kinetics in plasma-assisted molecular-beam epitaxy of GaN\(\left( {11\bar{2}2} \right)\): effect on the structural and optical properties. J. Appl. Phys. 103, 93514 (2008)Google Scholar
  59. 59.
    J.B. MacChesney, P.M. Bridenbaugh, P.B. O’Connor, Thermal stability of indium nitride at elevated temperatures and nitrogen pressures. Mater. Res. Bull. 5, 783 (1970)CrossRefGoogle Scholar
  60. 60.
    O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R.A. Fischer, A. Miehr, A. Bergmaier, G. Dollinger, Thermal stability and desorption of group III nitrides prepared by metal organic chemical vapor deposition. J. Vac. Sci. Technol. B 14, 3532 (1996)CrossRefGoogle Scholar
  61. 61.
    V.Y. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emptsev, S.V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A.V. Mudryi, J. Aderhold et al., Absorption and emission of hexagonal InN: evidence of narrow fundamental band gap. Phys. Status Solidi B 229, R1 (2002)CrossRefGoogle Scholar
  62. 62.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)CrossRefGoogle Scholar
  63. 63.
    Y. Nanishi, Y. Saito, T. Yamaguchi, RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003)CrossRefGoogle Scholar
  64. 64.
    Y. Saito, Y. Tanabe, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, Y. Nanishi, Polarity of high-quality indium nitride grown by RF molecular beam epitaxy. Phys. Status Solidi B 228, 13 (2001)CrossRefGoogle Scholar
  65. 65.
    A. Koukitsu, T. Taki, N. Takahashi, H. Seki, Thermodynamic study on the role of hydrogen during the MOVPE growth of group III nitrides. J. Cryst. Growth 197, 99 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics EngineeringMie UniversityTsuJapan

Personalised recommendations