Fundamental Properties of III-Nitride Compounds

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 269)

Abstract

The reliability of calculated results using computational approach is crucial for discussing various aspects of growth related phenomena in III-nitride compounds.

References

  1. 1.
    R.S. Peace, An X-ray study of boron nitride. Acta Crystallogr. A 5, 356 (1952)CrossRefGoogle Scholar
  2. 2.
    P.K. Lam, R.M. Wentzcovitch, M.L. Cohen, High Density Phases of BN. Mater. Sci. Forum 54–55, 165 (1990)CrossRefGoogle Scholar
  3. 3.
    Y.N. Xu, W.Y. Ching, Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 44, 7787 (1991)CrossRefGoogle Scholar
  4. 4.
    W. Yim, E. Stofko, P. Zanzucchi, J. Pankove, M. Ettenberg, S. Gilbert, Epitaxially grown AlN and its optical band gap. J. Appl. Phys. 44, 292 (1973)CrossRefGoogle Scholar
  5. 5.
    J. H. Edgar (ed.), Properties of Group III Nitrides EMIS Datareviews Series No. 11 (The Institution of Electrical Engineers, London 1994)Google Scholar
  6. 6.
    Q. Xia, H. Xia, A.L. Ruoff, Pressure-induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition. J. Appl. Phys. 73, 8198 (1993)CrossRefGoogle Scholar
  7. 7.
    T. Detchprohm, K. Hiramatsu, K. Itoh, I. Akasaki, Relaxation process of the thermal strain in the GaN/α-Al2O3 heterostructure and determination of the intrinsic lattice constants of GaN free from the strain. Jpn. J. Appl. Phys. 31, L1454 (1992)CrossRefGoogle Scholar
  8. 8.
    D. Gerlich, S.L. Dole, G.A. Slack, Elastic properties of aluminum nitride. J. Phys. Chem. Solids 47, 437 (1986)CrossRefGoogle Scholar
  9. 9.
    T.L. Tansley, C.P. Foley, Optical band gap of indium nitride. J. Appl. Phys. 59, 3241 (1986)CrossRefGoogle Scholar
  10. 10.
    P.E. Van Camp, V.E. Van Doren, J.T. Devreese, Pressure dependence of the electronic properties of cubic III-V In compounds. Phys. Rev. B 41, 1598 (1990)CrossRefGoogle Scholar
  11. 11.
    C. Stampfl, C.G. Van de Walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation. Phys. Rev. B 59, 5521 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Yamashita, K. Fukui, S. Misawa, S. Yoshida, Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region. J. Appl. Phys. 50, 896 (1979)CrossRefGoogle Scholar
  13. 13.
    B. Monemar, Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 10, 676 (1974)CrossRefGoogle Scholar
  14. 14.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)CrossRefGoogle Scholar
  15. 15.
    Y. Taniyasu, M. Kasu, Origin of exciton emissions from an AlN p-n junction light-emitting diode. Appl. Phys. Lett. 98, 131910 (2011)CrossRefGoogle Scholar
  16. 16.
    D.C. Reynolds, D.C. Look, W. Kim, Ö. Aktas, A. Botchkarev, A. Salvador, H. Morkoç, D.N. Talwar, Ground and excited state exciton spectra from GaN grown by molecular-beam epitaxy. J. Appl. Phys. 80, 594 (1996)Google Scholar
  17. 17.
    M. Drechsler, D.M. Hofmann, B.K. Meyer, T. Detchprohm, H. Amano, I. Akasaki, Determination of the conduction band electron effective mass in hexagonal GaN. Jpn. J. Appl. Phys. 34, L1178 (1995)CrossRefGoogle Scholar
  18. 18.
    J.S. Im, A. Moritz, F. Steuber, V. Härle, F. Scholz, A. Hangleiter, Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl. Phys. Lett. 70, 631 (1997)CrossRefGoogle Scholar
  19. 19.
    A. Rubio, J.L. Corkill, M.L. Cohen, Quasiparticle band structure of AlN and GaN. Phys. Rev. B 48, 11810 (1993)CrossRefGoogle Scholar
  20. 20.
    K. Nakagawa, M. Miyao, Reverse temperature dependence of Ge surface segregation during Si-molecular beam epitaxy. J. Appl. Phys. 69, 3058 (1991)CrossRefGoogle Scholar
  21. 21.
    S. Fukatsu, K. Fujita, H. Yaguchi, Y. Shiraki, R. Ito, Self-limitation in the surface segregation of Ge atoms during Si molecular beam epitaxial growth. Appl. Phys. Lett. 59, 2103 (1991)CrossRefGoogle Scholar
  22. 22.
    N. Ohtani, S.M. Mokler, B.A. Joyce, Simulation studies of Ge surface segregation during gas source MBE growth of Si/Si1−xGex heterostructures. Surf. Sci. 295, 325 (1993)CrossRefGoogle Scholar
  23. 23.
    D.E. Jesson, S.J. Pennycook, J.-M. Baribeau, D.C. Houghton, Atomistic processes of surface segregation during Si/Ge MBE growth. Thin Solid Films 222, 98 (1992)CrossRefGoogle Scholar
  24. 24.
    T.S. Kuan, T.F. Kuech, W.I. Wang, E.L. Wilkie, Long-range order in AlxGa1−xAs. Phys. Rev. Lett. 54, 201 (1985)CrossRefGoogle Scholar
  25. 25.
    A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, I. Hino, T. Yuasa, Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy. Appl. Phys. Lett. 50, 673 (1987)CrossRefGoogle Scholar
  26. 26.
    O. Ueda, M. Takikawa, J. Komeno, I. Umebu, Atomic structure of ordered InGaP crystals grown on (001)GaAs substrates by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 26, L1824 (1987)CrossRefGoogle Scholar
  27. 27.
    N. Grandjean, J. Massies, S. Dalmasso, P. Vennegues, L. Siozade, L. Hirsch, GaInN/GaN multiple-quantum-well light-emitting diodes grown by molecular beam epitaxy. Appl. Phys. Lett. 74, 3616 (1999)CrossRefGoogle Scholar
  28. 28.
    N. Duxbury, U. Bangert, P. Dawson, E.J. Thrush, W. Van der Stricht, K. Jacobs, I. Moerman, Indium segregation in InGaN quantum-well structures. Appl. Phys. Lett. 76, 1600 (2000)CrossRefGoogle Scholar
  29. 29.
    Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita Sg. Fujita, S. Nakamura, Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl. Phys. Lett. 70, 981 (1997)CrossRefGoogle Scholar
  30. 30.
    T. Saito, Y. Arakawa, Atomic structure and phase stability of InxGa1−xN random alloys calculated using a valence-force-field method. Phys. Rev. B 60, 1701 (1999)CrossRefGoogle Scholar
  31. 31.
    Y. Kangawa, T. Ito, A. Mori, A. Koukitu, Anomalous behavior of excess energy curves of InxGa1-xN grown on GaN and InN. J. Cryst. Growth 220, 401 (2000)CrossRefGoogle Scholar
  32. 32.
    S.Y. Karpov, Suppression of phase separation in InGaN due to elastic strain. MRS Int. J. Nitride Semicond. Res 3, 16 (1998)CrossRefGoogle Scholar
  33. 33.
    T. Ito, A pseudopotential approach to the structural and thermodynamical properties of III–V ternary semiconductor alloys. Phys. Status Solidi B 129, 559 (1985)CrossRefGoogle Scholar
  34. 34.
    T. Ito, A pseudopotential approach to the disorder effects in III-V ternary semiconductor alloys. Phys. Status Solidi B 135, 493 (1986)CrossRefGoogle Scholar
  35. 35.
    F.S.D. Lester, F.A. Ponce, M.G. Craford, D.A. Steigerwald, High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249 (1995)CrossRefGoogle Scholar
  36. 36.
    I. Belabbas, J. Chen, G. Nouet, Electronic structure and metallization effects at threading dislocation cores in GaN. Comput. Mater. Sci. 90, 71 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Takei, T. Nakayama, Electron-carrier generation by edge dislocations in InN films: First-principles study. J. Cryst. Growth 311, 2767 (2009)CrossRefGoogle Scholar
  38. 38.
    F.A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, S. Tanaka, Microstructure and electronic properties of InGaN alloys. Phys. Status Solidi B 240, 273 (2003)CrossRefGoogle Scholar
  39. 39.
    N. Duxbury, U. Bangert, P. Dawson, E. Thrush, W. Van der Stricht, K. Jacobs, I. Moerman, Indium segregation in InGaN quantum-well structures. Appl. Phys. Lett. 76, 1600 (2000)CrossRefGoogle Scholar
  40. 40.
    H. Lei, J. Chen, P. Ruterana, Influences of the biaxial strain and c-screw dislocation on the clustering in InGaN alloys. J. Appl. Phys. 108, 103503 (2010)CrossRefGoogle Scholar
  41. 41.
    L. Chang, S.K. Lai, F.R. Chen, J.J. Kai, Observations of Al segregation around dislocations in AlGaN. Appl. Phys. Lett. 79, 928 (2001)CrossRefGoogle Scholar
  42. 42.
    C.J. Fall, R. Jones, P.R. Briddon, A.T. Blumenau, T. Frauenheim, M.I. Heggie, Influence of dislocations on electron energy-loss spectra in gallium nitride. Phys. Rev. B 65, 245304 (2002)CrossRefGoogle Scholar
  43. 43.
    M.K. Horton, S. Rhode, S.L. Sahonta, M.J. Kappers, S.J. Haigh, T.J. Pennycook, C.J. Humphreys, R.O. Dusane, M.A. Moram, Segregation of Into Dislocations in InGaN. Nano Lett. 15, 923 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Mera, K. Maeda, Optoelectronic activities of dislocations in gallium nitride crystals. IEICE Trans. Electron. E83-C, 612 (2000)Google Scholar
  45. 45.
    V. Potin, P. Ruterana, G. Nouet, R.C. Pond, H. Morkoç, Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries. Phys. Rev. B 61, 5587 (2000)CrossRefGoogle Scholar
  46. 46.
    Y. Xin, S.J. Pennycook, N.D. Nellist, S. Sivanathan, F. Ommnes, B. Neaumont, J.P. Faurie, P. Gibart, Direct observation of the core structures of threading dislocations in GaN. Appl. Phys. Lett. 72, 2680 (1998)CrossRefGoogle Scholar
  47. 47.
    J.P. Hirth, J. Lothe, Theory of dislocations (Wiley, New York, 1982)Google Scholar
  48. 48.
    K. Kawamoto, T. Suda, T. Akiyama, K. Nakamura, T. Ito, An empirical potential approach to dislocation formation and structural stability in GaNxAs1-x. Appl. Surf. Sci. 244, 182 (2005)CrossRefGoogle Scholar
  49. 49.
    T. Ito, S. Inahama, T. Akiyama, K. Nakamura, Systematic theoretical investigations of compositional inhomogeneity in InxGa1-xN thin films on GaN(0001). J. Cryst. Growth 298, 186 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Bere, A. Serra, Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002)CrossRefGoogle Scholar
  51. 51.
    S.M. Lee, A. Belkhir, X.Y. Zhu, Y.H. Lee, Y.G. Hwang, Th Frauenheim, Electronic structures of GaN edge dislocations. Phys. Rev. B 61, 16033 (2000)CrossRefGoogle Scholar
  52. 52.
    N. Miyagishima, T. Shinoda, K. Suzuki, T. Kaneko, K. Takeda, K. Shiraishi, T. Ito, Atomic and electronic structure of misfit dislocations in GaSb/GaAs(001). Phys. B 340–342, 1009 (2003)CrossRefGoogle Scholar
  53. 53.
    R. Sakaguchi, T. Akiyama, K. Nakamura, T. Ito, Theoretical investigations of compositional inhomogeneity around threading dislocations in III–nitride semiconductor alloys. Jpn. Appl. Phys. 55, 05FM05 (2016)CrossRefGoogle Scholar
  54. 54.
    A. Polian, M. Grimsditch, I. Grzegory, Elastic constants of gallium nitride. J. Appl. Phys. 79, 3343 (1996)CrossRefGoogle Scholar
  55. 55.
    L.E. McNeil, M. Grimsditch, R.H. French, Vibrational Spectroscopy of Aluminum Nitride. J. Am. Ceram. Soc. 76, 1132 (1993)CrossRefGoogle Scholar
  56. 56.
    A.U. Sheleg, V.A. Savastenko, Determination of elastic constants of hexagonal crystals from measured values of dynamic atomic displacements. Izv. Akad. Nauk SSSR Neorg. Mater. 15, 1598 (1979). [in Russian]Google Scholar
  57. 57.
    I. Belabbas, J. Chen, G. Nouet, A new atomistic model for the threading screw dislocation core in wurtzite GaN. Comput. Mater. Sci. 51, 206 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics EngineeringMie UniversityTsuJapan

Personalised recommendations