Novel Behaviors Related to III-Nitride Thin Film Growth

  • Toru AkiyamaEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 269)


In Chaps. 4 and 7, we have discussed an ab initio-based chemical potential approach that incorporates the free energy of gas phase, to determine surface structures and growth kinetics on III-nitride surfaces.


  1. 1.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, Y. Nanishi, Growth temperature dependence of indium nitride crystalline quality grown by RF-MBE. Phys. Status Solidi B 234, 796 (2002)CrossRefGoogle Scholar
  3. 3.
    R.E. Jones, K.M. Yu, S.X. Li, W. Walukiewicz, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Evidence for p-type doping of InN. Phys. Rev. Lett. 96, 125505 (2006)CrossRefGoogle Scholar
  4. 4.
    P.A. Anderson, C.H. Swartz, D. Carder, R.J. Reeves, S.M. Durbina, S. Chandril, T.H. Myers, Buried p-type layers in Mg-doped InN. Appl. Phys. Lett. 89, 184104 (2006)CrossRefGoogle Scholar
  5. 5.
    V. Cimalla, M. Niebelschutz, G. Ecke, V. Lebedev, O. Ambacher, M. Himmerlich, S. Krischok, J.A. Schaefer, H. Lu, W.J. Schaff, Surface band bending at nominally undoped and Mg-doped InN by Auger electron spectroscopy. Phys. Status Solidi A 203, 59 (2006)CrossRefGoogle Scholar
  6. 6.
    X. Wang, S.-B. Che, Y. Ishitani, A. Yoshikawa, Growth and properties of Mg-doped In-polar InN films. Appl. Phys. Lett. 90, 201913 (2007)CrossRefGoogle Scholar
  7. 7.
    J.-H. Song, T. Akiyama, A.J. Freeman, Stabilization of bulk p-type and surface n-type carriers in Mg-doped InN{0001} films. Phys. Rev. Lett. 101, 186801 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Mclaurin, B. Haskell, S. Nakamura, J.S. Speck, Gallium adsorption onto \(\left( {11\bar{2}0} \right)\) gallium nitride surfaces. J. Appl. Phys. 96, 327 (2004)Google Scholar
  10. 10.
    T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382 (1997)CrossRefGoogle Scholar
  11. 11.
    P.D.C. King, T.D. Veal, C.F. McConville, F. Fuchs, J. Furthmuller, F. Bechstedt, P. Schley, R. Goldhahn, J. Schormann, D.J. As, K. Lischk, D. Muto, H. Naoi, Y. Nanishi, H. Lu, W.J. Schaff, Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces. Appl. Phys. Lett. 91, 092101 (2007)CrossRefGoogle Scholar
  12. 12.
    C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, S. Gwo, Absence of fermi-level pinning at cleaved nonpolar InN surfaces. Phys. Rev. Lett. 101, 106803 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Segev, C.G. van de Walle, Surface reconstructions on InN and GaN polar and nonpolar surfaces. Surf. Sci. 601, L15 (2007)CrossRefGoogle Scholar
  14. 14.
    C.G. Van de Walle, D. Segev, Microscopic origins of surface states on nitride surfaces. J. Appl. Phys. 101, 081704 (2007)CrossRefGoogle Scholar
  15. 15.
    C.K. Gan, D.J. Srolovitz, First-principles study of wurtzite InN\(\left(0001 \right)\) and \(\left(000\bar{1} \right)\) surfaces. Phys. Rev. B 74, 115319 (2006)Google Scholar
  16. 16.
    T.D. Veal, P.D.C. King, P.H. Jefferson, L.F.J. Piper, C.F. McConville, H. Lu, W.J. Schaff, P.A. Anderson, S.M. Durbin, D. Muto, H. Naoi, Y. Nanishi, In adlayers on c-plane InN surfaces: A polarity-dependent study by x-ray photoemission spectroscopy. Phys. Rev. B 76, 075313 (2007)CrossRefGoogle Scholar
  17. 17.
    J.E. Northrup, Effect of magnesium on the structure and growth of GaN(0001). Appl. Phys. Lett. 86, 122108 (2005)CrossRefGoogle Scholar
  18. 18.
    Q. Sun, A. Selloni, T.H. Myers, W.A. Doolittle, Energetics of Mg incorporation at GaN(0001) and GaN\(\left( {000\bar{1}} \right)\) surfaces. Phys. Rev. B 73, 155337 (2006)Google Scholar
  19. 19.
    M.D. Pashley, K.W. Haberern, W. Friday, J.M. Woodall, P.D. Kirchner, Structure of GaAs(001) (2×4)-c(2×8) determined by scanning tunneling microscopy. Phys. Rev. Lett. 60, 2176 (1988)CrossRefGoogle Scholar
  20. 20.
    T. Ito, K. Shiraishi, A theoretical investigation of migration potentials of Ga adatoms near kink and step edges on GaAs(001)-(2×4) surface. Jpn. J. Appl. Phys. 35, L949 (1996)CrossRefGoogle Scholar
  21. 21.
    T. Miyajima, S. Uemura, Y. Kudo, Y. Kitajima, A. Yamamoto, D. Muto, Y. Nanishi, GaN thin films on z- and x-cut LiNbO3 substrates by MOVPE. Phys. Status Solidi C 5, 1665 (2008)CrossRefGoogle Scholar
  22. 22.
    D. Muto, H. Naoi, S. Takado, H. Na, T. Araki, Y. Nanishi, Mg-doped N-polar InN Grown by RF-MBE. Mater. Res. Soc. Symp. Proc. 955, I08–01 (2007)Google Scholar
  23. 23.
    J.E. Northrup, Hydrogen and magnesium incorporation on c-plane and m-plane GaN surfaces. Phys. Rev. B 77, 045313 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112 (1989). Part 2CrossRefGoogle Scholar
  25. 25.
    S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31, L139 (1992). Part 2CrossRefGoogle Scholar
  26. 26.
    C. Wang, R.F. Davis, Deposition of highly resistive, undoped, and p-type, magnesium-doped gallium nitride films by modified gas source molecular beam epitaxy. Appl. Phys. Lett. 63, 990 (1993)CrossRefGoogle Scholar
  27. 27.
    Z. Yang, L.K. Li, W.I. Wang, GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source. Appl. Phys. Lett. 67, 1686 (1995)CrossRefGoogle Scholar
  28. 28.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024 (1997)CrossRefGoogle Scholar
  29. 29.
    T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on spinel substrates. Jpn. J. Appl. Phys. 44, L920 (2005). Part 2CrossRefGoogle Scholar
  30. 30.
    M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates. Jpn. J. Appl. Phys. 45, L659 (2006). Part 2CrossRefGoogle Scholar
  31. 31.
    M. Ueda, K. Kojima, M. Funato, Y. Kawakami, Y. Nakamura, T. Mukai, Epitaxial growth and optical properties of semipolar \(\left( {11\bar{2}2} \right)\) GaN and InGaN∕GaN quantum wells on GaN bulk substrates. Appl. Phys. Lett. 89, 2101907 (2006)CrossRefGoogle Scholar
  32. 32.
    J.F. Kaeding, H. Asamizu, H. Sato, M. Iza, T.E. Mates, S.P. DenBaars, J.S. Speck, S. Nakamura, Realization of high hole concentrations in Mg doped semipolar \(\left( {10\bar{1}\bar{1}} \right)\) GaN. Appl. Phys. Lett. 89, 202104 (2006)Google Scholar
  33. 33.
    H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, High power and high efficiency blue light emitting diode on freestanding semipolar \(\left( {10\bar{1}\bar{1}} \right)\) bulk GaN substrate. Appl. Phys. Lett. 90, 233504 (2007)Google Scholar
  34. 34.
    T. Hikosaka, N. Koide, Y. Honda, M. Yamaguchi, N. Sawaki, p-type conduction in a C-doped \(\left( {1\bar{1}01} \right)\) GaN grown on a 7-degree-off oriented (001)Si substrate by selective MOVPE. Phys. Status Solidi C 3, 1425 (2006)Google Scholar
  35. 35.
    J. Saida, E.H. Kim, T. Hikosaka, Y. Honda, M. Yamaguchi, N. Sawaki, Energy relaxation processes of photo-generated carriers in Mg doped (0001) GaN and \(\left( {1\bar{1}01} \right)\) GaN. Phys. Status Solidi C 5, 1746 (2008)Google Scholar
  36. 36.
    T. Hikosaka, N. Koide, Y. Honda, M. Yamaguchi, N. Sawaki, Mg doping in \(\left( {1\bar{1}01} \right)\) GaN grown on a 7° off-axis (001)Si substrate by selective MOVPE. J. Cryst. Growth 298, 207 (2007)Google Scholar
  37. 37.
    N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, M. Yamaguchi, Growth and properties of semi-polar GaN on a patterned silicon substrate. J. Cryst. Growth 311, 2867 (2009)CrossRefGoogle Scholar
  38. 38.
    K. Tomita, T. Hikosaka, T. Kachi, N. Sawaki, Mg segregation in a \(\left( {1\bar{1}01} \right)\) GaN grown on a 7° off-axis (001) Si substrate by MOVPE. J. Cryst. Growth 311, 2883 (2009)Google Scholar
  39. 39.
    L.K. Li, M.J. Jurkovic, W.I. Wang, Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy. Appl. Phys. Lett. 76, 1740 (2000)CrossRefGoogle Scholar
  40. 40.
    E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, B. Daudin, Modification of GaN(0001) growth kinetics by Mg doping. Appl. Phys. Lett. 84, 2554 (2004)CrossRefGoogle Scholar
  41. 41.
    T. Akiyama, D. Ammi, K. Nakamura, T. Ito, Stability of magnesium-Incorporated semipolar GaN\(\left( {10\bar{1}\bar{1}} \right)\) surfaces. Jpn. J. Appl. Phys. 48, 110202 (2009)Google Scholar
  42. 42.
    T. Akiyama, D. Ammi, K. Nakamura, T. Ito, Surface reconstruction and magnesium incorporation on semipolar GaN surfaces. Phys. Rev. B 81, 245317 (2010)Google Scholar
  43. 43.
    P. Boguslawski, E.L. Briggs, J. Bernholc, Amphoteric properties of substitutional carbon impurity in GaN and AlN. Appl. Phys. Lett. 69, 233 (1996)CrossRefGoogle Scholar
  44. 44.
    H. Tang, J.B. Webb, J.A. Bardwell, S. Raymond, J. Salzman, C. Uzan-Saguy, Properties of carbon-doped GaN. Appl. Phys. Lett. 78, 757 (2001)CrossRefGoogle Scholar
  45. 45.
    Y. Honda, N. Kameshiro, M. Yamaguchi, N. Sawaki, Growth of \(\left( {1\bar{1}01} \right)\) GaN on a 7-degree off-oriented (001)Si substrate by selective MOVPE. J. Cryst. Growth 242, 82 (2002)Google Scholar
  46. 46.
    S. Keller, B.P. Keller, Y.F. Wu, B. Heying, D. Kapolnek, J.S. Speck, U.K. Mishra, S.P. DenBaars, Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 68, 1525 (1996)CrossRefGoogle Scholar
  47. 47.
    M.H. Kim, C. Sone, J.H. Yi, E. Yoon, Changes in the growth mode of low temperature GaN buffer layers with nitrogen plasma nitridation of sapphire substrates. Appl. Phys. Lett. 71, 1228 (1997)CrossRefGoogle Scholar
  48. 48.
    N. Grandjean, J. Massies, M. Leroux, Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers. Appl. Phys. Lett. 69, 2071 (1996)CrossRefGoogle Scholar
  49. 49.
    F. Widmann, G. Feuillet, B. Daudin, J.L. Rouviere, Low temperature sapphire nitridation: A clue to optimize GaN layers grown by molecular beam epitaxy. J. Appl. Phys. 85, 1550 (1999)CrossRefGoogle Scholar
  50. 50.
    K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, S. Minagawa, Nitridation process of sapphire substrate surface and its effect on the growth of GaN. J. Appl. Phys. 79, 3487 (1996)CrossRefGoogle Scholar
  51. 51.
    T. Hashimoto, Y. Terakoshi, M. Ishida, M. Yuri, O. Imafuji, T. Sugino, A. Yoshikawa, K. Itoh, Structural investigation of sapphire surface after nitridation. J. Cryst. Growth 189–190, 254 (1998)CrossRefGoogle Scholar
  52. 52.
    M. Seelmann-Eggebert, H. Zimmermann, H. Obloh, R. Niebuhr, B. Wachtendorf, Plasma cleaning and nitridation of sapphire substrates for AlxGa1−xN epitaxy as studied by x-ray photoelectron diffraction. J. Vac. Sci. Technol. A16, 2008 (1998)CrossRefGoogle Scholar
  53. 53.
    P. Vennegues, B. Beaumont, Transmission electron microscopy study of the nitridation of the (0001) sapphire surface. Appl. Phys. Lett. 75, 4115 (1999)CrossRefGoogle Scholar
  54. 54.
    B. Ma, W. Hu, H. Miyake, K. Hiramatsu, Nitridating r-plane sapphire to improve crystal qualities and surface morphologies of a-plane GaN grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 95, 121910 (2009)CrossRefGoogle Scholar
  55. 55.
    J.-J. Wu, Y. Katagiri, K. Okuura, D.-B. Li, H. Miyake, K. Hiramatsu, Effects of initial stages on the crystal quality of nonpolar a-plane AlN on r-plane sapphire by low-pressure HVPE. J. Cryst. Growth 311, 3801 (2009)CrossRefGoogle Scholar
  56. 56.
    N. Grandjean, J. Massies, Y. Martinez, P. Vennegues, M. Leroux, M. Laügt, GaN epitaxial growth on sapphire (0001): the role of the substrate nitridation. J. Cryst. Growth 178, 220 (1997)CrossRefGoogle Scholar
  57. 57.
    K. Masu, Y. Nakamura, T. Yamazaki, T.S.T. Tsubouchi, AlN/α-Al2O3 heteroepitaxial interface with initial-nitriding AlN layer. Jpn. J. Appl. Phys. 34, L760 (1995)CrossRefGoogle Scholar
  58. 58.
    M. Yeadon, M.T. Marshall, F. Hamdani, S. Pekin, H. Morkoç, J.M. Gibson, In situ transmission electron microscopy of AlN growth by nitridation of (0001) α-Al2O3. J. Appl. Phys. 83, 2847 (1998)CrossRefGoogle Scholar
  59. 59.
    M. Losurdo, P. Capezzuto, G. Bruno, Plasma cleaning and nitridation of sapphire (α-Al2O3) surfaces: new evidence from in situ real time ellipsometry. J. Appl. Phys. 88, 2138 (2000)CrossRefGoogle Scholar
  60. 60.
    G. Namkoong, W.A. Doolittle, A.S. Brown, M. Losurdo, P. Capezzuto, G. Bruno, Role of sapphire nitridation temperature on GaN growth by plasma assisted molecular beam epitaxy: Part I. Impact of the nitridation chemistry on material characteristics. J. Appl. Phys. 91, 2499 (2002)CrossRefGoogle Scholar
  61. 61.
    Y. Cho, Y. Kim, E.R. Weber, S. Ruvimov, Z. Liliental-Weber, Chemical and structural transformation of sapphire (Al2O3) surface by plasma source nitridation. J. Appl. Phys. 85, 7909 (1999)CrossRefGoogle Scholar
  62. 62.
    F. Dwikusuma, T.F. Kuech, X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: nitridation mechanism. J. Appl. Phys. 94, 5656 (2003)CrossRefGoogle Scholar
  63. 63.
    T. Akiyama, Y. Saito, K. Nakamura, T. Ito, Stability of nitrogen incorporated Al2O3 surfaces: formation of AlN layers by oxygen desorption. Surf. Sci. 606, 221 (2012)CrossRefGoogle Scholar
  64. 64.
    T.M. French, G.A. Somorjai, Composition and surface structure of the (0001) face of alpha-alumina by low-energy electron diffraction. J. Phys. Chem. 74, 2489 (1970)CrossRefGoogle Scholar
  65. 65.
    M. Sano, M. Aoki, Epitaxial growth of undoped and Mg-doped GaN. Jpn. J. Appl. Phys. 15, 1943 (1976)CrossRefGoogle Scholar
  66. 66.
    T. Sasaki, S. Zembutsu, Substrate-orientation dependence of GaN single-crystal films grown by metalorganic vapor-phase epitaxy. J. Appl. Phys. 61, 2533 (1987)CrossRefGoogle Scholar
  67. 67.
    Th. Becker, A. Birkner, G. Witte, Ch. Wöll, Microstructure of the α-Al2O3\(\left( {11\bar{2}0} \right)\) surface. Phys. Rev. B 65, 115401 (2002)Google Scholar
  68. 68.
    K. Akiyama, Y. Ishii, H. Murakami, Y. Kumagai, A. Koukitu, In situ gravimetric monitoring of surface reactions between sapphire and NH3. J. Cryst. Growth 311, 3110 (2009)CrossRefGoogle Scholar
  69. 69.
    V. Puchin, J. Gale, A. Shluger, E. Kotomin, J. Günster, M. Brause, V. Kempter, Atomic and electronic structure of the corundum (0001) surface: comparison with surface spectroscopies. Surf. Sci. 370, 190 (1997)CrossRefGoogle Scholar
  70. 70.
    R. Di Felice, J.E. Northrup, Theory of the clean and hydrogenated Al2O3(0001)-(1×1) surfaces. Phys. Rev. B 60, R16287 (1999)CrossRefGoogle Scholar
  71. 71.
    X.-G. Wang, A. Chaka, M. Scheffler, Effect of the environment on α-Al2O3(0001) surface structures. Phys. Rev. Lett. 84, 3650 (2000)Google Scholar
  72. 72.
    A. Marmier, S.C. Parker, ab initio morphology and surface thermodynamics of α−Al2O3. Phys. Rev. B 69, 115409 (2004)CrossRefGoogle Scholar
  73. 73.
    T. Kurita, K. Uchida, A. Oshiyama, Atomic and electronic structures of α-Al2O3 surfaces. Phys. Rev. B 82, 155319 (2010)CrossRefGoogle Scholar
  74. 74.
    J. Ahn, J.W. Rabalais, Composition and structure of the Al2O3{0001}–(1×1) surface. Surf. Sci. 388, 121 (1997)CrossRefGoogle Scholar
  75. 75.
    T. Akiyama, Y. Saito, K. Nakamura, T. Ito, Nitridation of Al2O3 surfaces: chemical and structural change triggered by oxygen desorption. Phys. Rev. Lett. 110, 026101 (2013)CrossRefGoogle Scholar
  76. 76.
    G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000)CrossRefGoogle Scholar
  77. 77.
    K.C. Pandey, Diffusion without vacancies or interstitials: a new concerted exchange mechanism. Phys. Rev. Lett. 57, 2287 (1986)CrossRefGoogle Scholar
  78. 78.
    T. Akiyama, K. Nakamura, T. Ito, J.-H. Song, A.J. Freeman, Structures and electronic states of Mg incorporated into InN surfaces: first-principles pseudopotential calculations. Phys. Rev. B 80, 075316 (2009)Google Scholar
  79. 79.
    T. Akiyama, K. Nakamura, T. Ito, Stability of carbon incorpoated semipolar GaN\(\left( {1\bar{1}01} \right)\) surface. Jpn. J. Appl. Phys. 50, 080216 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics EngineeringMie UniversityTsuJapan

Personalised recommendations