Advertisement

Computational Differential Privacy from Lattice-Based Cryptography

Conference paper
  • 488 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10737)

Abstract

In this work we investigate the problem of private statistical analysis of time-series data in the distributed and semi-honest setting. In particular, we study some properties of Private Stream Aggregation (PSA), first introduced by Shi et al. 2011. This is a computationally secure protocol for the collection and aggregation of data in a distributed network and has a very small communication cost. In the non-adaptive query model, a secure PSA scheme can be built upon any key-homomorphic weak pseudo-random function as shown by Valovich 2017, yielding security guarantees in the standard model which is in contrast to Shi et al. We show that every mechanism which preserves \((\epsilon ,\delta )\)-differential privacy in effect preserves computational \((\epsilon ,\delta )\)-differential privacy when it is executed through a secure PSA scheme. Furthermore, we introduce a novel perturbation mechanism based on the symmetric Skellam distribution that is suited for preserving differential privacy in the distributed setting, and find that its performances in terms of privacy and accuracy are comparable to those of previous solutions. On the other hand, we leverage its specific properties to construct a computationally efficient prospective post-quantum protocol for differentially private time-series data analysis in the distributed model. The security of this protocol is based on the hardness of a new variant of the Decisional Learning with Errors (DLWE) problem. In this variant the errors are taken from the symmetric Skellam distribution. We show that this new variant is hard based on the hardness of the standard Learning with Errors (LWE) problem where the errors are taken from the discrete Gaussian distribution. Thus, we provide a variant of the LWE problem that is hard based on conjecturally hard lattice problems and uses a discrete error distribution that is similar to the continuous Gaussian distribution in that it is closed under convolution. A consequent feature of the constructed prospective post-quantum protocol is the use of the same noise for security and for differential privacy.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1964)zbMATHGoogle Scholar
  2. 2.
    Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24178-9_9 CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35 CrossRefGoogle Scholar
  4. 4.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_42 CrossRefGoogle Scholar
  5. 5.
    Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10 (2016)CrossRefGoogle Scholar
  6. 6.
    Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Proceedings of STOC 2008, pp. 609–618 (2008)Google Scholar
  7. 7.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_1 CrossRefGoogle Scholar
  8. 8.
    Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32946-3_15 CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4 CrossRefGoogle Scholar
  10. 10.
    Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-with-errors problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 18–34. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_2 CrossRefGoogle Scholar
  11. 11.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79228-4_1 CrossRefGoogle Scholar
  12. 12.
    Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_29 CrossRefGoogle Scholar
  13. 13.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_14 CrossRefGoogle Scholar
  14. 14.
    Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proceedings of STOC 2009, pp. 351–360 (2009)Google Scholar
  15. 15.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_10 CrossRefGoogle Scholar
  17. 17.
    Laforgia, A., Natalini, P.: Some inequalities for modified bessel functions. J. Inequal. Appl. 2010(1), 253035 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 1(1), 5 (2009)Google Scholar
  19. 19.
    McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of FOCS 2007, pp. 94–103 (2007)Google Scholar
  20. 20.
    McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of SIGMOD ICMD 2009, pp. 19–30 (2009)Google Scholar
  21. 21.
    Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_26 CrossRefGoogle Scholar
  22. 22.
    Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_8 CrossRefGoogle Scholar
  23. 23.
    Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. In: Proceedings of FOCS 1995, pp. 170–181 (1995)Google Scholar
  24. 24.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of SIGMOD 2010, pp. 735–746 (2010)Google Scholar
  25. 25.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC 2005, pp. 84–93 (2005)Google Scholar
  26. 26.
    Shi, E., Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings of NDSS 2011 (2011)Google Scholar
  27. 27.
    Skellam, J.G.: The frequency distribution of the difference between two poisson variates belonging to different populations. J. Roy. Stat. Soc. 109(3), 296 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Valovich, F.: Aggregation of time-series data under differential privacy. In: Publication at LATINCRYPT 2017 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics, Horst Görtz Institute for IT SecurityRuhr-Universität BochumBochumGermany

Personalised recommendations