A Novel RSA-Like Cryptosystem Based on a Generalization of the Rédei Rational Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10737)


In this paper we present a novel RSA-like cryptosystem. Specifically, we define a novel product that arises from a cubic field connected to the cubic Pell equation. We discuss some interesting properties and remarks about this product that can also be evaluated through a generalization of the Rédei rational functions. We then exploit these results to construct a novel RSA-like scheme that is more secure than RSA in broadcast applications. Moreover, our scheme is robust against the Wiener attack and against other kind of attacks that exploit the knowledge of a linear relation occurring between two plaintexts.


Cubic Pell equation Public cryptography Rédei function RSA 


  1. 1.
    Barbeau, E.J.: Pell’s Equation. Springer, New York (2003). CrossRefzbMATHGoogle Scholar
  2. 2.
    Bellini, E., Murru, N.: An efficient and secure RSA-like cryptosystem exploiting Rédei rational functions over conics. Finite Fields Appl. 39, 179–194 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 46, 203–213 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Christofferson, S.: Über eine Klasse von kubischen diophantischen Gleichungen mit drei Unbekannten. Arkiv för Matematik 3(4), 355–364 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Demytko, N.: A new elliptic curve based analogue of RSA. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer, Heidelberg (1994). Google Scholar
  7. 7.
    Dujella, A.: Continued fractions and RSA with small secret exponent. Tatra Mt. Math. Publ. 29, 101–112 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    von zur Gathen, J.: Tests for permutation polynomials. SIAM J. Comput. 20, 591–602 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hastad, J.: N using RSA with low exponent in a public key network. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 403–408. Springer, Heidelberg (1986). CrossRefGoogle Scholar
  10. 10.
    Jacobson, N.: Basic Algebra II. W. H. Freeman and Company, San Francisco (1989)Google Scholar
  11. 11.
    Joye, M., Quisquater, J.-J.: Protocol failures for RSA-like functions using Lucas sequences and elliptic curves. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 93–100. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  12. 12.
    Koyama, K.: Fast RSA-type schemes based on singular cubic curves \(y^2 + axy \equiv x^3\) (mod n). In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 329–340. Springer, Heidelberg (1995). CrossRefGoogle Scholar
  13. 13.
    Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes based on elliptic curves over the ring \(\mathbb{Z}_n\). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992). Google Scholar
  14. 14.
    Lidl, R., Mullen, G.L., Turnwald, G.: Dickson polynomials. Pitman monographs surveys in pure applied mathematics, vol. 65. Longman, Harlow (1993)zbMATHGoogle Scholar
  15. 15.
    Loxtou, J.H., Khoo, D.S.P., Bird, G.J., Seberry, J.: A cubic RSA code equivalent to factorization. J. Cryptol. 5(2), 139–150 (1992)MathSciNetzbMATHGoogle Scholar
  16. 16.
    More, W.: Fast evaluation on Rédei functions. Appl. Algebra Eng. Commun. Comput. 6(3), 171–173 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997). Google Scholar
  18. 18.
    Nobauer, R.: Cryptanalysis of the Rédei scheme. Contrib. Gen. Algebra 3, 255–264 (1984)MathSciNetGoogle Scholar
  19. 19.
    Padhye, S.: A public key cryptosystem based on Pell equation. IACR Cryptol. ePrint Arch. 191 (2006)Google Scholar
  20. 20.
    Patarin, J.: Some serious protocol failures for RSA with exponent e of less than 32 bits. CIRM Luminy, France, 25–29 September 1995Google Scholar
  21. 21.
    Rédei, L.: Uber eindeuting umkehrbare polynome in endlichen korpen. Acta Sci. Math. (Szeged) 11, 85–92 (1946)zbMATHGoogle Scholar
  22. 22.
    Topuzoglu, A., Winterhof, A.: Topics in geometry, coding theory and cryptography. Algebra Appl. 6, 135–166 (2006)CrossRefGoogle Scholar
  23. 23.
    Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36, 553–558 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics “G. Peano”University of TurinTorinoItaly

Personalised recommendations