Generation and Implementation of Cryptographically Strong Elliptic Curves

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10737)


Elliptic curves over finite fields are an essential part of public key cryptography. The security of cryptosystems with elliptic curves is based on the computational intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP). The paper presents requirements which cryptographically secure elliptic curves have to satisfy, together with their justification and some relevant examples of elliptic curves. We implemented modular arithmetic in a finite field, the operations on an elliptic curve and the basic cryptographic protocols.


Elliptic curve cryptography Modular arithmetic Digital signature ECDSA Diffie-Hellman key agreement 


  1. 1.
    Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryptography.
  2. 2.
    Bernstein, D.J., Chou, T., Chuengsatiansup, Ch., Huelsing, A., Lange, T., Niederhagen, R., Van Vredendaal, Ch.: How to manipulate curve standards: a white paper for the black hat. In: Cryptology ePrint Archive, 2014/571 (2014).
  3. 3.
    ECC Brainpool: ECC Brainpool Standard Curves and Curve generation (2005).
  4. 4.
    Frey, G.: Private Communication (2017)Google Scholar
  5. 5.
    Gawinecki, J., Szmidt, J.: Zastosowanie ciał skończonych i krzywych eliptycznych w kryptografii (Applications of finite fields and elliptic curves in cryptography). Wojskowa Akademia Techniczna, Warszawa (1999)Google Scholar
  6. 6.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004). ISBN 0-387-95273-XzbMATHGoogle Scholar
  7. 7.
    INFOSEC Technical and Implementation Directive on Cryptographic Security and Cryptographic Mechanisms, AC/322-D/0047-REV2, 11 March 2009Google Scholar
  8. 8.
    Huang, M.-D., Raskind, W.: Signature calculus and discrete logarithm problems. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 558–572. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  9. 9.
    Jao, D., Miller, S.D., Venkatesen, R.: Ramanujan graphs and the random reducibility of discrete log on isogenous elliptic curves (2004).
  10. 10.
    Magma Computational Algebra System.
  11. 11.
    NIST: Recommended Elliptic Curves for Federal Government Use (1999)Google Scholar
  12. 12.
    Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comm. Math. Univ. Sancti Pauli 47, 81–92 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    SEC2: Recommended Elliptic Curve Domain Parameters. Certicom Research, 27 January (2010). Version 2.0Google Scholar
  15. 15.
    Barrett, P.: Implementing the rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). CrossRefGoogle Scholar
  16. 16.
    Montgomery, P.: Modular multiplication without trial division. Math. Comput. 44, 519–521 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wojskowy Instytut ŁącznoṡciZegrze PołudniowePoland

Personalised recommendations