Advertisement

The Measures of Pseudorandomness and the NIST Tests

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10737)

Abstract

A few years ago new quantitative measures of pseudorandomness of binary sequences have been introduced. Since that these measures have been studied in many papers and many constructions have been given along these lines. In this paper the connection between the new measures and the NIST tests is analyzed. It is shown that finite binary sequences possessing strong pseudorandom properties in terms of these new measures usually also pass or nearly pass most of the NIST tests.

Keywords

Pseudorandom sequences Binary sequence NIST tests 

2010 Mathematics Subject Classification

11K45 

References

  1. 1.
    Ahlswede, R., Khachatrian, L.H., Mauduit, C., Sárközy, A.: A complexity measure for families of binary sequences. Period. Math. Hung. 46, 107–118 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Kohayakawa, Y., Mauduit, C., Moreira, C.G., Rödl, V.: Measures of pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. 95, 778–812 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandstätter, N., Winterhof, A.: Linear complexity profile of binary sequences with small correlation measure. Period. Math. Hung. 52(2), 1–8 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cassaigne, J., Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences VII: the measures of pseudorandomness. Acta Arith. 103(2), 97–118 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Z., Lin, Z.: Modified constructions of binary sequences using multiplicative inverse. Appl. Math. J. Chin. Univ. Ser. B 23(4), 490–500 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cusick, T.W., et al.: Stream Ciphers and Number Theory. North-Holland Mathematical Library, vol. 55. North-Holland Publishing Co., Amsterdam (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Damgård, I.B.: On the randomness of Legendre and Jacobi sequences. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 163–172. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_13 Google Scholar
  8. 8.
    Diem, C.: On the use of expansion series for stream ciphers. LMS J. Comput. Math. 15, 326–340 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fouvry, E., Mauduit, C.: Sommes des chiffres et nombres presques premiers. Math. Ann. 305, 571–599 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goubin, L., Mauduit, C., Sárközy, A.: Construction of large families of pseudorandom binary sequences. J. Number Theory 106(1), 56–69 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gyarmati, K.: On a pseudorandom property of binary sequences. Ramanujan J. 8, 289–302 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gyarmati, K.: Measures of pseudorandomness. In: Finite Fields and Their Applications. Radon Series on Computational and Applied Mathematics, vol. 11, pp. 43–64. De Gruyter, Berlin (2013)Google Scholar
  13. 13.
    Gyarmati, K., Mauduit, C., Sárközy, A.: The cross-correlation measure for families of binary sequences. In: Larcher, G., et al. (eds.) Applied Algebra and Number Theory, pp. 126–143. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  14. 14.
    Kohayakawa, Y., Mauduit, C., Moreira, C.G., Rödl, V.: Measures of pseudorandomness for finite sequences: minimum and typical values. In: Proceedings of WORDS 2003, TUCS General Publications, vol. 27, pp. 159–169. Turku Centre for Computer Science, Turku (2003)Google Scholar
  15. 15.
    Liu, H.: Large families of pseudorandom binary sequences and lattices by using the multiplicative inverse. Acta Arith. 159(2), 123–131 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, H., Gao, J.: A note on large families of pseudorandom binary sequences and lattices. JISE J. Inf. Sci. Eng. 30(5), 1635–1654 (2014)MathSciNetGoogle Scholar
  17. 17.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT-15, 122–127 (1969)Google Scholar
  18. 18.
    Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences I: measures of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences II. (The Champernowne, Rudin-Shapiro and Thue-Morse sequences. A further construction.). J. Number Theory 73, 256–276 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mauduit, C., Sárközy, A.: Construction of pseudorandom binary sequences by using the multiplicative inverse. Acta Math. Hung. 108(3), 239–252 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mérai, L.: Construction of pseudorandom binary sequences over elliptic curves using multiplicative characters. Publ. Math. Debr. 80(1–2), 199–213 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mérai, L., Niederreiter, H., Winterhof, A.: Expansion complexity and linear complexity of sequences over finite fields. Cryptogr. Commun. 9(4), 501–509 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mérai, L., Winterhof, A.: On the Nth linear complexity of automatic sequences. J. Number Theory (2018).  https://doi.org/10.1016/j.jnt.2017.11.008
  24. 24.
    Révész, P.: Random Walk in Random and Non-random Environments. World Scientific, Singapore (1990)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rivat, J., Sárközy, A.: On pseudorandom sequences and their application. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 343–361. Springer, Heidelberg (2006).  https://doi.org/10.1007/11889342_19 CrossRefGoogle Scholar
  26. 26.
    Rukhin, A., Soto, J., Nechvata, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dra, J., Vo, S.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22, Revision 1.a (2001). http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
  27. 27.
    Sárközy, A.: On pseudorandomness of families of binary sequences. J. Discret. Appl. Math. 216(3), 670–676 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shapiro, H.S.: Extremal problems for polynomials and power series. M.S. thesis, M.I.T. (1951)Google Scholar
  29. 29.
    Tóth, V.: Collision and avalanche effect in families of pseudorandom binary sequences. Period. Math. Hungar. 59, 1–8 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. Chapman & Hall/CRC Press, Boca Raton (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  2. 2.Institut de Mathématiques de Marseille UMR 7373Université d’Aix-MarseilleMarseille Cedex 9France
  3. 3.Department of Algebra and Number TheoryEötvös Loránd UniversityBudapestHungary

Personalised recommendations