Skip to main content

Thermal Properties

  • Chapter
  • First Online:

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 27))

Abstract

This chapter is dedicated to relevant thermal properties in the scope of massive concrete structures. The initial part of the chapter (Sect. 3.1) pertains to properties that affect internal temperature developments in concrete, namely the thermal conductivity, the heat capacity and the heat exchanges between concrete and the surrounding media. The final part of the chapter (Sect. 3.2) is devoted to the thermal expansion coefficient, which is of fundamental importance to understand and predict the actual volume changes that take place in massive structures due to temperature variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AASHTO. (2011). T 336 Standard method of test for coefficient of thermal expansion of hydraulic cement concrete. Washington, D.C.: American Association of State Highway and Transportation Officials.

    Google Scholar 

  • Abdolhosseini Qomi, M. J., Ulm, F.-J., & Pellenq, R. J.-M. (2015). Physical origins of thermal properties of cement paste. Physical Review Applied, 3, 064010.

    Article  Google Scholar 

  • ACI. (2001). ACI 224.3R-95: Joints in concrete construction. Farmington Hills, MI.

    Google Scholar 

  • ACI. (2005). ACI 207.1R-05: Guide to mass concrete. Farmington Hills, MI.

    Google Scholar 

  • ARMY-COE CRD-C 39-81. (1981). Handbook for Concrete and Cement Test Method for Coefficient of Linear Thermal Expansion of Concrete.

    Google Scholar 

  • ASTM C531-00. (2012). Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM C1113/C1113M-09. (2013). Standard test method for thermal conductivity of refractories by hot wire (Platinum resistance thermometer technique). West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Azenha, M., Maekawa, K., Ishida, T., & Faria, R. (2007a). Drying induced moisture losses from mortar to the environment. Part I: Experimental research. Materials and Structures, 40, 80–811.

    Google Scholar 

  • Azenha, M., Maekawa, K., Ishida, T., & Faria, R. (2007b). Drying induced moisture losses from mortar to the environment. Part II: Numerical implementation. Materials and Structures, 40, 813–825.

    Article  Google Scholar 

  • Azenha, M. (2009). Numerical simulation of the structural behaviour of concrete since its early ages. Ph.D. thesis, Faculty of Engineering of the University of Porto, Portugal.

    Google Scholar 

  • Azenha, M., Sousa, C., Faria, R., & Neves, A. (2011). Thermo–hygro–mechanical modelling of self-induced stresses during the service life of RC structures. Engineering Structures, 33, 3442–3453.

    Article  Google Scholar 

  • Azenha, M, & Granja, J. (2015). Characterization of concrete properties at early ages: Case studies of the University of Minho. CMS Workshop “Cracking of Massive Concrete Structures”, eBook of Presentations (RILEM), March 17, 2015. ENS-Cachan, Paris.

    Google Scholar 

  • Bangash, M. Y. H. (2001). Manual of numerical methods in concrete. London, UK: Thomas Telford Ltd.

    Google Scholar 

  • Baquerizo, L. G., Matschei, T., Scrivener, K. L., et al. (2015). Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143–157.

    Article  Google Scholar 

  • Bentz, D. (2007). Transient plane source measurements of the thermal properties of hydrating cement pastes. Materials and Structures, 40, 1073–1080.

    Article  Google Scholar 

  • Bentz, D. (2008). A review of early-age properties of cement-based materials. Cement and Concrete Research, 38(2), 196–204.

    Article  Google Scholar 

  • Bentz, D., Peltz, M., Duran-Herrera, A., Valdez, P., & Juarez, C. (2011). Thermal properties of high-volume fly ash mortars and concretes. Journal of Building Physics, 34(3), 263–275.

    Article  Google Scholar 

  • Bentz, D. P., & Prasad, K. R. (2007). Thermal performance of fire resistive materials. I. Characterization with respect to thermal performance models. NISTIR 7401, National Institute of Standards and Technology, Gaithersburg, MD, USA.

    Google Scholar 

  • Bjøntegaard, Ø., & Sellevold, E. J. (2001). Interaction between thermal dilation and autogenous deformation in high performance concrete. Materials and Structures, 34, 266–272.

    Article  Google Scholar 

  • Bohm, H. J., & Nogales, S. (2008). Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Composites Science and Technology, 68(5), 1181–1187.

    Article  Google Scholar 

  • de Borst, R., & van den Boogaard, A. H. (1994). Finite-element modeling of deformation and cracking in early-age concrete. ASCE Journal of the Engineering Mechanics, 120(12), 2519–2534.

    Article  Google Scholar 

  • Boulay, C. (2003). Determination of the coefficient of thermal expansion. Early age cracking in cementitious systems. Report of RILEM Technical Committee 181-EAS—Early age shrinkage induced stresses and cracking in cementitious systems (pp. 217–224). RILEM Publications SARL.

    Google Scholar 

  • Branco, F. A., Mendes, P. A., & Mirambell, E. (1992). Heat of hydration effects in concrete structures. ACI Materials Journal, 89(2), 139–145.

    Google Scholar 

  • van Breugel, K. (1980). Artificial cooling of hardening concrete. Delft University of Technology. Concrete Structures, Delft.

    Google Scholar 

  • Briffaut, M., Benboudjema, F., Torrenti, J. M., & Nahas, G. (2012). Effects of the early age thermal behaviour on long term damage risk in massive concrete structures. European Journal of Environmental and Civil Engineering, 16(5), 598–605.

    Article  Google Scholar 

  • Buch, N. J., & Jahangirnejad, S. (2008). Quantifying coefficient of thermal expansion values of typical hydraulic cement concrete paving mixtures (No. RC-1503). Michigan Department of Transportation, Construction & Technology Division.

    Google Scholar 

  • Campbell-Allen, D., & Thorne, C. P. (1963). The thermal conductivity of concrete. Magazine of Concrete Research, 15(43), 39–48.

    Article  Google Scholar 

  • CEB-FIP fib. (2013). Bulletin 70. State-of-the-art report: Code-type models for concrete behaviour. Background of MC2010.

    Google Scholar 

  • Cerny, R., & Rovnanikova, P. (2002). Transport processes in concrete. CRC Press.

    Google Scholar 

  • Choktaweekarn, P., & Tangtermsirikul, S. (2010). Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete. Songklanakarin Journal of Science and Technology, 32, 391–402.

    Google Scholar 

  • Cook, W. D., Aitcin, P. C., & Mitchell, D. (1993). Thermal stresses in large high-strength concrete columns. ACI Materials Journal, 89(1), 61–68.

    Google Scholar 

  • Côté, J., & Konrad, J.-M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.

    Article  Google Scholar 

  • Coussy, O. (2005). Poromechanics. Chichester: Wiley.

    MATH  Google Scholar 

  • Craeye, B., de Schutter, G., Humbeeck, H. V., & Cotthem, A. V. (2009). Early age behaviour of concrete supercontainers for radioactive waste disposal. Nuclear Engineering and Design, 239, 23–35.

    Article  Google Scholar 

  • Cusson, D., & Hoogeveen, T. (2007). An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage. Cement and Concrete Research, 37, 200–209.

    Article  Google Scholar 

  • Delsaute, B., & Staquet, S. (2017). Decoupling thermal and autogenous strain of concretes with different water/cement ratios during the hardening process. Advances in Civil Engineering Materials, 6(2), 1–22.

    Article  Google Scholar 

  • Faria, R., Azenha, M., & Figueiras, J. A. (2006). Modelling of concrete at early ages: Application to an externally restrained slab. Cement and Concrete Research, 28, 572–585.

    Article  Google Scholar 

  • Gawin, D., Majorana, C. E., & Schrefler, B. A. (1999). Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mechanics of Cohesive-Frictional Materials, 4, 37–74.

    Article  Google Scholar 

  • Gawin, D., Pesavento, F., & Schrefler, B. A. (2006). Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. International Journal for Numerical Methods in Engineering, 67, 299–331.

    Article  Google Scholar 

  • Gibbon, G. J., & Ballim, Y. (1998). Determination of the thermal conductivity of concrete during the early stages of hydration. Magazine of Concrete Research, 50, 229–235.

    Article  Google Scholar 

  • Guo, L., Guo, L., Zhong, L., & Zhu, Y. (2011). Thermal conductivity and heat transfer coefficient of concrete. Journal of Wuhan University of Technology-Materials Science Edition, 26(4), 791–796.

    Article  Google Scholar 

  • Grasley, Z., & Lange, D. (2007). Thermal dilation and internal relative humidity of hardened cement paste. Materials and Structures, 40(3), 311–317.

    Article  Google Scholar 

  • Hammer, T. A., & Bjøntegaard, Ø. (2006). Testing of autogenous deformation (AD) and thermal dilation (TD) of early age mortar and concrete—Recommended test procedure. In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation (pp. 341–346). RILEM Publications SARL.

    Google Scholar 

  • Hammerschmidt, U. (2002). Guarded hot-plate (GHP) method: Uncertainty assessment. International Journal of Thermophysics, 23(6), 1551–1570.

    Article  Google Scholar 

  • Hamzah, M. O., Jamshidi, A., & Shahadan, Z. (2010). Evaluation of the potential of sasobit to reduce required heat energy and co2 emission in the asphalt industry. Journal of Cleaner Production, 18(18), 1859–1865.

    Article  Google Scholar 

  • Hasanain, G. S., Khallaf, T. A., & Mahmood, K. (1989). Water evaporation from freshly placed concrete surfaces in hot weather. Cement and Concrete Research, 19(3), 465–475.

    Article  Google Scholar 

  • Hobbs, D. (1971). The dependence of the bulk modulus, Young’s modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration. Materials and Structures, 4(2), 107–114.

    Google Scholar 

  • Hollick, J. (2012). Nocturnal radiation cooling tests. Energy Procedia, 30, 930–936.

    Article  Google Scholar 

  • Holman, J. (2009). Heat transfer (10th ed.). Boston: McGraw-Hill Education.

    Google Scholar 

  • Honorio, T. (2015). Modelling concrete behaviour at early-age: Multiscale analysis and simulation of a massive disposal structure. Ph.D. thesis, ENS Cachan, Univeristé Paris-Saclay.

    Google Scholar 

  • Honorio, T., Bary, B., & Benboudjema, F. (2018). Thermal properties of cement-based materials: Multiscale estimations at early-age. Cement and Concrete Composites, 87, 205–219.

    Article  Google Scholar 

  • Jendele, L., Šmilauer, V., & Cervenka, J. (2014). Multiscale hydro–thermo–mechanical model for early-age and mature concrete structures. Advances in Engineering Software, 72, 134–146.

    Article  Google Scholar 

  • Jensen, O. M., & Hansen, P. F. (1999). Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement and Concrete Research, 29, 567–575.

    Article  Google Scholar 

  • Jonasson, J.-E. (1994). Modelling of temperature, moisture and stress in young concrete. Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.

    Google Scholar 

  • Kada, H., Lachemi, M., Petrov, N., Bonneau, O., & Aitcin, P. C. (2002). Determination of the coefficient of thermal expansion of high performance concrete from initial setting. Materials and Structures, 35, 35–41.

    Article  Google Scholar 

  • Khan, M. I. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37, 607–614.

    Article  Google Scholar 

  • Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363–371.

    Article  Google Scholar 

  • Klemczak, B. (2011). Prediction of coupled heat and moisture transfer in early-age massive concrete structures. Numerical Heat Transfer, Part A: Applications, 60, 212–233.

    Article  Google Scholar 

  • Kodur, V. (2014). Properties of Concrete at Elevated Temperatures. ISRN Civil Engineering, 2014, 468510.

    Article  Google Scholar 

  • Kovler, K. (1995). Shock of evaporative cooling of concrete in hot dry climate. Concrete International, 17(10), 65–69.

    Google Scholar 

  • Kovler, K., & Zhutovsky, S. (2006). Overview and future trends of shrinkage research. Materials and Structures, 39(9), 827–847.

    Article  Google Scholar 

  • Kusuda, T. (1977). Fundamentals of building heat transfer. Journal of Research of the National Bureau of Standards, 82(2).

    Article  Google Scholar 

  • Kwak, H.-G., Ha, S.-J., & Kim, J.-K. (2006). Non-structural cracking in RC walls. Part I: Finite element formulation. Cement and Concrete Research, 36, 749–760.

    Article  Google Scholar 

  • Lee, Y., Choi, M. S., Yi, S. T., & Kim, J. K. (2009). Experimental study on the convective heat transfer coefficient of early-age concrete. Cement and Concrete Composites, 31(1), 60–71.

    Article  Google Scholar 

  • Litovsky, E. Y., & Shapiro, M. (1992). Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part 1, Refractories and ceramics with porosity below 30%. Journal of American Ceramic Society, 75, 3425–3439.

    Article  Google Scholar 

  • Liu, X., Jiang, W., de Schutter, G., Yuan, Y., & Su, Q. (2014). Early-age behaviour of precast concrete immersed tunnel based on degree of hydration concept. Structural Concrete, 15(1), 66–80.

    Article  Google Scholar 

  • Loser, R., Münch, B., & Lura, P. (2010). A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar. Cement and Concrete Research, 40(7), 1138–1147.

    Article  Google Scholar 

  • Lothenbach, B., Matschei, T., Möschner, G., & Glasser, F. P. (2008). Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cement and Concrete Research, 38, 1–18.

    Article  Google Scholar 

  • Luca, J., & Mrawira, D. (2005). New measurement of thermal properties of superpave asphalt concrete. Journal of Materials in Civil Engineering, 17(1), 72–79.

    Article  Google Scholar 

  • Lura, P., & Van Breugel, K. (2001). Thermal properties of concrete: sensitivity studies. Report: Improved Production of Advanced Concrete (IPACS). Lulea University of Technology.

    Google Scholar 

  • Marshall, A. L. (1972). The thermal properties of concrete. Building Science, 7, 167–174.

    Article  Google Scholar 

  • Maruyama, I., & Teramoto, A. (2011). Impact of time-dependant thermal expansion coefficient on the early-age volume changes in cement pastes. Cement and Concrete Research, 41, 380–391.

    Article  Google Scholar 

  • Maruyama, I., & Teramoto, A. (2012). Effect of water-retaining lightweight aggregate on the reduction of thermal expansion coefficient in mortar subject to temperature histories. Cem Concr Compos, 34(10), 1124–1129.

    Article  Google Scholar 

  • Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cement and Concrete Research, 37, 1379–1410.

    Article  Google Scholar 

  • McCarter, W. J., & Ben-Saleh, A. M. (2001). Influence of practical curing methods on evaporation of water from freshly placed concrete in hot climates. Built Environment, 36(8), 919–924.

    Article  Google Scholar 

  • Mehta P, Monteiro P (2005) Concrete: Microstructure, Properties, and Materials. McGraw-Hill.

    Google Scholar 

  • Michell, D., & Biggs, K. L. (1979). Radiation cooling of buildings at night. Applied Energy, 5(4), 263–275.

    Article  Google Scholar 

  • Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Modest, M. F. (2013). Radiative heat transfer. Academic press.

    Chapter  Google Scholar 

  • Morabito, P. (1989). Measurement of the thermal properties of different concretes. High Temperatures High Pressures, 21(1), 51–59.

    Google Scholar 

  • Mounanga, P., Khelidj, A., & Bastian, G. (2004). Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste. Advances in Cement Research, 16, 95–103.

    Article  Google Scholar 

  • Naik, T. R., Kraus, R. N., & Kumar, R. (2010). Influence of types of coarse aggregates on the coefficient of thermal expansion of concrete. Journal of Materials in Civil Engineering, 23(4), 467–472.

    Article  Google Scholar 

  • Neville, A. M. (1997). Properties of concrete (4th ed.). London, UK: Wiley.

    Google Scholar 

  • Pomianowski, M., Heiselberg, P., Jensen, R. L., Cheng, R., & Zhang, Y. (2014). A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. Cement and Concrete Research, 55, 22–34.

    Article  Google Scholar 

  • Radjy, F., Sellevold, E. J., & Hansen, K. K. (2003). Isosteric vapor pressure—Temperature data for water sorption in hardened cement paste: Enthalpy, entropy and sorption isotherms at different temperatures. Report BYG-DTU R-057. Lyngby: Technical University of Denmark.

    Google Scholar 

  • Reinhardt, H.-W., Blauwendraad, J., & Jongendijk, J. (1982). Temperature development in concrete structures taking account of state dependent properties. In International Conference on Concrete at Early Ages, RILEM, Paris (pp. 211–218).

    Google Scholar 

  • Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8(2), 157–173.

    Article  Google Scholar 

  • de Schutter, G. (2002). Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Computers & Structures, 80, 2035–2042.

    Article  Google Scholar 

  • Ruiz, J., Schindler, A., Rasmussen, R., Kim, P., & Chang, G. (2001). Concrete temperature modeling and strength prediction using maturity concepts in the FHWA HIPERPAV software. In 7th International Conference on Concrete Pavements, Orlando (FL), USA, 2001.

    Google Scholar 

  • Sellevold, E. J., & Bjøntegaard, Ø. (2006). Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction. Materials and Structures, 39, 809–815.

    Article  Google Scholar 

  • Tatro, S. B. (2006). Thermal properties. In J. F. Lamond & J. H. Pielert (Eds.), Significance of tests and properties of concrete and concrete-making materials, STP169D-EB (p. 2006). West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Todd, S. (1951). Low-temperature heat capacities and entropies at 298.16 °K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. Journal of the American Chemical Society, 73, 3277–3278.

    Article  Google Scholar 

  • Ulm, F. J., & Coussy, O. (2001). What is a “massive” concrete structure at early ages? Some dimensional arguments. Journal of Engineering Mechanics, 127, 512–522.

    Article  Google Scholar 

  • Vargaftik, N. B. (1993) Handbook of thermal conductivity of liquids and gases. CRC Press.

    Google Scholar 

  • Wojcik, G. S. (2001). The interaction between the atmosphere and curing concrete bridge decks. Ph.D. thesis, State University of New York at Albany, Dissertation Abstracts International (Vol. 63-01, Section: B).

    Google Scholar 

  • Wojcik, G. S., Fitzjarrald, D. R., & Plawsky, J. L. (2003). Modelling the interaction between the atmosphere and curing concrete bridge decks with the SLABS model. Meteorological Applications, 10(2), 165–186.

    Article  Google Scholar 

  • Wyrzykowski, M., & Lura, P. (2013a). Moisture dependence of thermal expansion in cement-based materials at early ages. Cement and Concrete Research, 53, 25–35.

    Article  Google Scholar 

  • Wyrzykowski, M., & Lura, P. (2013b). Controlling the coefficient of thermal expansion of cementitious materials—A new application for superabsorbent polymers. Cement and Concrete Composites, 35, 49–58.

    Article  Google Scholar 

  • Xu, Y., & Chung, D. D. L. (2000). Effect of sand addition on the specific heat and thermal conductivity of cement. Cement and Concrete Research, 30, 59–61.

    Article  Google Scholar 

  • Yeon, J. H., Choi, S., & Won, M. C. (2013). In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development. Construction and Building Materials, 38, 306–315.

    Article  Google Scholar 

  • Yuan, Y., & Wan, Z. L. (2002). Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cement and Concrete Research, 32, 1053–1059.

    Article  Google Scholar 

  • Zreiki, J., Bouchelaghema, F., & Chaouchea, M. (2010). Early-age behaviour of concrete in massive structures—Experimentation and modelling. Nuclear Engineering and Design, 240, 2643–2654.

    Article  Google Scholar 

  • Zhutovsky, S., & Kovler, K. (2017). Application of ultrasonic pulse velocity for assessment of thermal expansion coefficient of concrete at early age. Materials and Structures, 50(5), 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Wyrzykowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wyrzykowski, M. et al. (2019). Thermal Properties. In: Fairbairn, E., Azenha, M. (eds) Thermal Cracking of Massive Concrete Structures. RILEM State-of-the-Art Reports, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-76617-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76617-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76616-4

  • Online ISBN: 978-3-319-76617-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics