Skip to main content

Macroscopic Models for the Bioelectronic Interface of Engineered Artificial Membranes

  • Conference paper
  • First Online:
  • 653 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 232))

Abstract

In this chapter, we present the formation and modeling techniques of two important sensing devices built out of engineered artificial membranes: the Ion Channel Switch (ICS) biosensor, and the Electroporation Measurement Platform (EMP). The ICS biosensor can be used to detect femto-molar concentrations of analyte species in an electrolyte solution, and the EMP is used to study the dynamics of electroporation in engineered membranes. The engineered membrane in the ICS and EMP are design to mimic the electrophysiological properties of real cell membranes. Common to both platforms is the bioelectronic interface for performing electrical measurements. Experimental measurements of the two platforms are performed by estimating the current response of the engineered membrane which depends on the charging dynamics at the bioelectronic interface and membrane, as well as dynamics of aqueous pores and conducting ion-channels in the membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A biomimetic system is a physical device that contains the features of a biological system. This is similar to an in vivo system in which biological molecules are used outside their normal biological environment.

  2. 2.

    Ex vivo means which take place outside the normal membrane environment in a cell, but with minimal alterations from the natural conditions of the membrane.

  3. 3.

    The evaluation of the fractional order derivative can be performed using the Adomian decomposition method [18] which is a popular semi-analytical method for solving ordinary and non-linear partial differential equations. Another method is the Variational iteration method [19] typically used for numerically solving non-linear partial differential equations. Linear multistep methods, such as the Adams-Bashforth-Moulton [20], can also be used to evaluate the fractional order derivative.

References

  1. B. Cornell, V. Braach-Maksvytis, L. King, P. Osman, B. Raguse, L. Wieczorek, R. Pace, Nature 387, 581 (1997)

    Article  Google Scholar 

  2. W. Hoiles, K. Krishnamurthy, B. Cornell, The Dynamics of Engineered Artificial Membranes and Biosensors (Cambridge University Press, 2017)

    Google Scholar 

  3. F. Heinrich, T. Ng, D. Vanderah, P. Shekhar, M. Mihailescu, H. Nanda, M. Losche, Langmuir 25(7), 4219 (2009)

    Article  Google Scholar 

  4. D. McGillivray, G. Valincius, D. Vanderah, W. Febo-Ayala, J. Woodward, F. Heinrich, J. Kasianowicz, M. Lösche, Biointerphases 2(1), 21 (2007)

    Article  Google Scholar 

  5. C. Cranfield, B. Cornell, S. Grage, P. Duckworth, S. Carne, A. Ulrich, B. Martinac, Biophys. J. 106(1), 182 (2014)

    Article  Google Scholar 

  6. B. Raguse, V. Braach-Maksvytis, B. Cornell, L. King, P. Osman, R. Pace, L. Wieczorek, Langmuir 14(3), 648 (1998)

    Article  Google Scholar 

  7. J. Prashar, P. Sharp, M. Scarffe, B. Cornell, J. Mater. Res. 22(08), 2189 (2007)

    Article  Google Scholar 

  8. S. Oh, B. Cornell, D. Smith, G. Higgins, C. Burrell, T. Kok, Biosens. Bioelectron. 23(7), 1161 (2008)

    Article  Google Scholar 

  9. G. Woodhouse, L. King, L. Wieczorek, P. Osman, B. Cornell, J. Mol. Recognit. 12(5), 328 (1999)

    Article  Google Scholar 

  10. V. Krishanmurthy, S. Monfared, B. Cornell, IEEE Trans. Nanotechnol. (Special Issue on Nanoelectronic Interface to Biomolecules and Cells) 9(3), 303 (2010)

    Google Scholar 

  11. M. Vela, H. Martin, C. Vericat, G. Andreasen, Hern, J. Phys. Chem. B 104(50), 11878 (2000)

    Article  Google Scholar 

  12. W. Hoiles, V. Krishnamurthy, B. Cornell, IEEE Trans. Biomed. Circuits Syst. PP(99), 1 (2014)

    Google Scholar 

  13. W. Hoiles, V. Krishnamurthy, C. Cranfield, B. Cornell, Biophys. J. 107(6), 1339 (2014)

    Article  Google Scholar 

  14. S. Taylor, E. Gileadi, Corrosion 51(9), 664 (1995)

    Article  Google Scholar 

  15. A. Allagui, T. Freeborn, A. Elwakil, B. Maundy, Sci. Rep. 6 (2016)

    Google Scholar 

  16. I. Jesus, T. Machado, Nonlinear Dyn. 56(1–2), 45 (2009)

    Article  Google Scholar 

  17. Z. Hughes, T. Walsh, J. Colloid Interface Sci. 436, 99 (2014)

    Article  Google Scholar 

  18. H. Jafari, V. Daftardar-Gejji, J. Comput. Appl. Math. 196(2), 644 (2006)

    Article  MathSciNet  Google Scholar 

  19. S. Momani, Z. Odibat, J. Comput. Appl. Math. 207(1), 96 (2007)

    Article  MathSciNet  Google Scholar 

  20. K. Diethelm, A. Freed, Forschung und wissenschaftliches Rechnen 1999, 57 (1998)

    Google Scholar 

  21. S. Das, Functional Fractional Calculus (Springer Science & Business Media, 2011)

    Chapter  Google Scholar 

  22. W. Hoiles, V. Krishnamurthy, IEEE Trans. Mol. Biol. Multi-scale Commun. 1(3), 265 (2015)

    Article  Google Scholar 

  23. V. Krishanmurthy, S. Monfared, B. Cornell, IEEE Trans. Nanotechnol. (Special Issue on Nanoelectronic Interface to Biomolecules and Cells) 9(3), 313 (2010)

    Google Scholar 

  24. H. Khalil, Nonlinear Systems (Prentice Hall, 2002)

    Google Scholar 

  25. V. Pastushenko, Y. Chizmadzhev, V. Arakelyan, J. Electroanal. Chem. Interfacial Electrochem. 104, 53 (1979)

    Article  Google Scholar 

  26. A. Barnett, J. Weaver, Bioelectrochem. Bioenerg. 25(2), 163 (1991)

    Article  Google Scholar 

  27. S. Freeman, M. Wang, J. Weaver, Biophys. J. 67(1), 42 (1994)

    Article  Google Scholar 

  28. J. Neu, W. Krassowska, Phys. Rev. E 59, 3471 (1999)

    Article  Google Scholar 

  29. J. Neu, W. Krassowska, Phys. Rev. E 67, 021915 (2003)

    Article  Google Scholar 

  30. J. Neu, W. Krassowska, Phys. Rev. E 74, 031917 (2006)

    Article  Google Scholar 

  31. I. Abidor, V. Arakelyan, L. Chernomordik, Y. Chizmadzhev, V. Pastushenko, M. Tarasevich, J. Electroanal. Chem. Interfacial Electrochem. 104, 37 (1979)

    Article  Google Scholar 

  32. R. Glaser, S. Leikin, L. Chernomordik, V. Pastushenko, A. Sokirko, Biochimica et Biophysica Acta (BBA)-Biomembranes 940(2), 275 (1988)

    Article  Google Scholar 

  33. D. Chang, T. Reese, Biophys. J. 58(1), 1 (1990)

    Article  Google Scholar 

  34. W. Sung, P. Park, Biophys. J. 73, 1797 (1997)

    Article  Google Scholar 

  35. C. Kanthou, S. Kranjc, G. Sersa, G. Tozer, A. Zupanic, M. Cemazar, Mol. Cancer Therapeutics 5(12), 3145 (2006)

    Article  Google Scholar 

  36. J. Teissie, M. Rols, Ann. New York Acad. Sci. 720(1), 98 (1994)

    Article  Google Scholar 

  37. M. Rols, J. Teissié, Biochimica et Biophysica Acta (BBA)-Biomembranes 1111(1), 45 (1992)

    Article  Google Scholar 

  38. C. Rosazza, J. Escoffre, A. Zumbusch, J. Rols, M, Mol Ther 19(5), 913 (2011)

    Google Scholar 

  39. W. Krassowska, P. Filev, Biophys. J. 92(2), 404 (2007)

    Article  Google Scholar 

  40. K. Smith, J. Neu, W. Krassowska, Biophys. J. 86(5), 2813 (2004)

    Article  Google Scholar 

  41. W. Hoiles, R. Gupta, B. Cornell, C. Cranfield, V. Krishnamurthy, PloS One 11(10), e0162790 (2016)

    Article  Google Scholar 

  42. M. Naumowicz, A. Figaszewski, Cell Biochem. Biophys. 66(1), 109 (2013)

    Article  Google Scholar 

  43. T. Shigematsu, K. Koshiyama, S. Wada, Chem. Phys Lipids 183, 43 (2014)

    Article  Google Scholar 

  44. I. Uitert, S. Gac, A. Berg, Biochimica et Biophysica Acta (BBA)-Biomembranes 1798(1), 21 (2010)

    Article  Google Scholar 

  45. W. Knoll, Handbook of Biofunctional Surfaces (Pan Stanford Publishing, 2013)

    Google Scholar 

  46. T. Husslein, D. Newns, P. Pattnaik, Q. Zhong, P. Moore, M. Klein, J. Chem. Phys. 109(7), 2826 (1998)

    Article  Google Scholar 

  47. W. Shinoda, M. Mikami, T. Baba, M. Hato, J. Phys. Chem. B 107(50), 14030 (2003)

    Article  Google Scholar 

  48. K. Shinoda, W. Shinoda, T. Baba, M. Mikami, J. Chem. Phys. 121(19), 9648 (2004)

    Article  Google Scholar 

  49. D. Lauffenburger, J. Linderman, Receptors: Models for Binding, Trafficking, and Signaling (Oxford University Press, 1993)

    Google Scholar 

  50. S. Monfared, V. Krishnamurthy, B. Cornell, Biosens. Bioelectron. 34, 261 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Hoiles or Vikram Krishnamurthy .

Editor information

Editors and Affiliations

Appendix

Appendix

All experimental measurements using the ICS and EMP, unless otherwise stated, were conducted at 20 \(^{\circ }\)C in a phosphate buffered solution with a pH of 7.2, and a 0.15 M saline solution composed of Na\(^+\), K\(^+\), and Cl\(^-\). At this temperature the tethered membrane is in the liquid phase. A pH of 7.2 was selected to match that typically found in the cellular cytosol of real cells. The forward and reverse reaction rates in Table 2 are obtained from [10, 23, 50]. The electroporation parameters \(\alpha , q, C, D, r_m\) are obtained from [27, 32, 39, 40], \(\gamma , \sigma \) from [41], and \(W_\text {es}(r)\) and \(G_p(r)\) from [13]. Using impedance measurements it was determined that the fractional order operator p is in the range of 0.95 to 0.98 suggesting that a diffusion-limited process is present at the bioelectronic gold interface of the tethered archaebacterial membrane. The associated capacitance \(C_{dl}\) is in the range of 120–180 nF.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoiles, W., Krishnamurthy, V. (2018). Macroscopic Models for the Bioelectronic Interface of Engineered Artificial Membranes. In: Bonilla, L., Kaxiras, E., Melnik, R. (eds) Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications. BIRS-16w5069 2016. Springer Proceedings in Mathematics & Statistics, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-76599-0_15

Download citation

Publish with us

Policies and ethics