Skip to main content

Topology by Design in Magnetic Nano-materials: Artificial Spin Ice

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

Abstract

Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano–fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W. Anderson et al., More is different. Science 177(4047), 393–396 (1972)

    Article  ADS  Google Scholar 

  2. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439(7074), 303–6 (2006)

    Article  ADS  Google Scholar 

  3. C. Nisoli, R. Moessner, P. Schiffer, Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85(4), 1473 (2013)

    Article  ADS  Google Scholar 

  4. E. Mengotti, L.J. Heyderman, A.F. Rodríguez, F. Nolting, R.V. Hügli, H.-B. Braun, Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7(1), 68–74 (2010)

    Article  Google Scholar 

  5. S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, W.R. Branford, Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010)

    Article  Google Scholar 

  6. S. Ladak, D. Read, T. Tyliszczak, W.R. Branford, L.F. Cohen, Monopole defects and magnetic coulomb blockade. New J. Phys. 13(2), 023023 (2011)

    Article  ADS  Google Scholar 

  7. K. Zeissler, S.K. Walton, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen, W.R. Branford, The non-random walk of chiral magnetic charge carriers in artificial spin ice. Sci. Rep. 3, 1252 (2013)

    Article  ADS  Google Scholar 

  8. C. Phatak, A.K. Petford-Long, O. Heinonen, M. Tanase, M. De Graef, Nanoscale structure of the magnetic induction at monopole defects in artificial spin-ice lattices. Phys. Rev. B 83(17), 174431 (2011)

    Article  ADS  Google Scholar 

  9. S. Ladak, D.E. Read, W.R. Branford, L.F. Cohen, Direct observation and control of magnetic monopole defects in an artificial spin-ice material. New J. Phys. 13(6), 063032 (2011)

    Article  ADS  Google Scholar 

  10. S.D. Pollard, V. Volkov, Y. Zhu, Propagation of magnetic charge monopoles and dirac flux strings in an artificial spin-ice lattice. Phys. Rev. B 85(18), 180402 (2012)

    Article  ADS  Google Scholar 

  11. N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou, O. Fruchart, S. El Moussaoui , A. Bendounan et al., Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice. Phys. Rev. Lett. 106(5), 057209 (2011)

    Google Scholar 

  12. B. Canals, I.-A. Chioar, V.-D. Nguyen, M. Hehn, D. Lacour, F. Montaigne, A. Locatelli, T.O. Menteş, B. Santos Burgos, N. Rougemaille, Fragmentation of magnetism in artificial kagome dipolar spin ice. Nat. Commun. 7 (2016)

    Article  ADS  Google Scholar 

  13. P.E. Lammert, X. Ke, J. Li, C. Nisoli, D.M. Garand, V.H. Crespi, P. Schiffer, Direct entropy determination and application to artificial spin ice. Nat. Phys. 6(10), 786–789 (2010)

    Article  Google Scholar 

  14. Y.-L. Wang, Z.-L. Xiao, A. Snezhko, J. Xu, L.E. Ocola, R. Divan, J.E. Pearson, G.W. Crabtree, W.-K. Kwok, Rewritable artificial magnetic charge ice. Science 352(6288), 962–966 (2016)

    Article  ADS  Google Scholar 

  15. C. Nisoli, R. Wang, J. Li, W. McConville, P. Lammert, P. Schiffer, V. Crespi, Ground state lost but degeneracy found: the effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98(21), 217203 (2007)

    Google Scholar 

  16. C. Nisoli, J. Li, X. Ke, D. Garand, P. Schiffer, V.H. Crespi, Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys. Rev. Lett. 105(4), 047205 (2010)

    Article  ADS  Google Scholar 

  17. X. Ke, J. Li, C. Nisoli, P.E. Lammert, W. McConville, R. Wang, V.H. Crespi, P. Schiffer, Energy minimization and ac demagnetization in a nanomagnet array. Phys. Rev. Lett. 101(3), 037205 (2008)

    Article  ADS  Google Scholar 

  18. L.F. Cugliandolo, Artificial spin-ice and vertex models. J. Stat. Phys. 1–16 (2017)

    Google Scholar 

  19. D. Levis, L.F. Cugliandolo, L. Foini, M. Tarzia, Thermal phase transitions in artificial spin ice. Phys. Rev. Lett. 110(20), 207206 (2013)

    Article  ADS  Google Scholar 

  20. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7(1), 75–79 (2010)

    Article  ADS  Google Scholar 

  21. Z. Budrikis, J.P. Morgan, J. Akerman, A. Stein, P. Politi, S. Langridge, C.H. Marrows, R.L. Stamps, Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. Phys. Rev. Lett. 109(3), 037203 (2012)

    Article  ADS  Google Scholar 

  22. Z. Budrikis, P. Politi, R.L. Stamps, Diversity enabling equilibration: disorder and the ground state in artificial spin ice. Phys. Rev. Lett. 107(21), 217204 (2011)

    Google Scholar 

  23. P.E. Lammert, V.H. Crespi, C. Nisoli, Gibbsianizing nonequilibrium dynamics of artificial spin ice and other spin systems. New J. Phys. 14(4), 045009 (2012)

    Article  ADS  Google Scholar 

  24. C. Nisoli, On thermalization of magnetic nano-arrays at fabrication. New J. Phys. 14(3), 035017 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  25. R.V. Hügli, G. Duff, B. O’Conchuir, E. Mengotti, L.J. Heyderman, A.F. Rodríguez, F. Nolting, H.B. Braun, Emergent magnetic monopoles, disorder, and avalanches in artificial kagome spin ice. J. Appl. Phys. 111(7), 07E103 (2012)

    Google Scholar 

  26. P. Mellado, O. Petrova, Y. Shen, O. Tchernyshyov, Dynamics of magnetic charges in artificial spin ice. Phys. Rev. Lett. 105(18), 187206 (2010)

    Google Scholar 

  27. S. Zhang, J. Li, I. Gilbert, J. Bartell, M.J. Erickson, Y. Pan, P.E. Lammert, C. Nisoli, K.K. Kohli, R. Misra et al., Perpendicular magnetization and generic realization of the ising model in artificial spin ice. Phys. Rev. Lett. 109(8), 087201 (2012)

    Google Scholar 

  28. U.B. Arnalds, J. Chico, H. Stopfel, V. Kapaklis, O. Bärenbold, M.A. Verschuuren, U. Wolff, V. Neu, A. Bergman, B. Hjörvarsson, A new look on the two-dimensional ising model: thermal artificial spins. New J. Phys. 18(2), 023008 (2016)

    Article  ADS  Google Scholar 

  29. C. Nisoli, Nano-ising. New J. Phys. 18(2), 021007 (2016)

    Article  Google Scholar 

  30. W.R. Branford, S. Ladak, D.E. Read, K. Zeissler, L.F. Cohen, Emerging chirality in artificial spin ice. Science 335(6076), 1597–1600 (2012)

    Article  ADS  Google Scholar 

  31. B.L. Le, J. Park, J. Sklenar, G.-W. Chern, C. Nisoli, J.D. Watts, M. Manno, D.W. Rench, N. Samarth, C. Leighton, P. Schiffer, Understanding magnetotransport signatures in networks of connected permalloy nanowires. Phys. Rev. B 95, 060405 (2017)

    Article  ADS  Google Scholar 

  32. L. Anghinolfi, H. Luetkens, J. Perron, M.G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P.M. Derlet, S.L. Lee, L.J. Heyderman. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6 (2015)

    Google Scholar 

  33. J. Drisko, T. Marsh, J. Cumings, Topological frustration of artificial spin ice. Nat. Commun. 8 (2017)

    Article  ADS  Google Scholar 

  34. S. Gliga, A. Kákay, R. Hertel, O.G. Heinonen, Spectral analysis of topological defects in an artificial spin-ice lattice. Phys. Rev. Lett. 110(11), 117205 (2013)

    Google Scholar 

  35. I. Gilbert, G.-W. Chern, B. Fore, Y. Lao, S. Zhang, C. Nisoli, P. Schiffer, Direct visualization of memory effects in artificial spin ice. Phys. Rev. B 92(10), 104417 (2015)

    Google Scholar 

  36. A. Libál, C. Reichhardt, C.J. Olson Reichhardt, Hysteresis and return-point memory in colloidal artificial spin ice systems. Phys. Rev. E 86(2), 021406 (2012)

    Article  ADS  Google Scholar 

  37. A. Libál, C. Reichhardt, C.J. Olson Reichhardt, Realizing colloidal artificial ice on arrays of optical traps. Phys. Rev. Lett. 97(22), 228302 (2006)

    Article  ADS  Google Scholar 

  38. A. Libál, C.J. Olson Reichhardt, C. Reichhardt, Creating artificial ice states using vortices in nanostructured superconductors. Phys. Rev. Lett. 102(23), 237004 (2009)

    Article  ADS  Google Scholar 

  39. A. Libal, C. Nisoli, C. Reichhardt, C.J. Reichhardt, Dynamic control of topological defects in artificial colloidal ice (2016), arXiv:1609.02129

  40. C.J. Olson Reichhardt, A. Libal, C. Reichhardt, Multi-step ordering in kagome and square artificial spin ice. New J. Phys. 14(2), 025006 (2012)

    Article  ADS  Google Scholar 

  41. D. Ray, C.J. Olson Reichhardt, B. Jankó, C Reichhardt, Strongly enhanced pinning of magnetic vortices in type-ii superconductors by conformal crystal arrays. Phys. Rev. Lett. 110(26), 267001 (2013)

    Google Scholar 

  42. C. Nisoli, Dumping topological charges on neighbors: ice manifolds for colloids and vortices. New J. Phys. 16(11), 113049 (2014)

    Article  ADS  Google Scholar 

  43. A. Ortiz-Ambriz, P. Tierno, Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices. Nat. Commun. 7 (2016)

    Article  ADS  Google Scholar 

  44. P. Tierno, Geometric frustration of colloidal dimers on a honeycomb magnetic lattice. Phys. Rev. Lett. 116(3), 038303 (2016)

    Article  ADS  Google Scholar 

  45. J. Loehr, A. Ortiz-Ambriz, P. Tierno, Defect dynamics in artificial colloidal ice: real-time observation, manipulation, and logic gate. Phys. Rev. Lett. 117(16), 168001 (2016)

    Google Scholar 

  46. M.L. Latimer, G.R. Berdiyorov, Z.L. Xiao, F.M. Peeters, W.K. Kwok, Realization of artificial ice systems for magnetic vortices in a superconducting moge thin film with patterned nanostructures. Phys. Rev. Lett. 111, 067001 (2013)

    Article  ADS  Google Scholar 

  47. J. Trastoy, M. Malnou, C. Ulysse, R. Bernard, N. Bergeal, G. Faini, J. Lesueur, J. Briatico, J.E. Villegas, Freezing and melting of vortex ice (2013), arXiv:1307.2881

  48. P. Mellado, A. Concha, L. Mahadevan, Macroscopic magnetic frustration. Phys. Rev. Lett. 109(25), 257203 (2012)

    Article  ADS  Google Scholar 

  49. V. Kapaklis, U.B. Arnalds, A. Harman-Clarke, E.Th. Papaioannou, M. Karimipour, P. Korelis, A. Taroni, P.C.W. Holdsworth, S.T. Bramwell, B. Hjörvarsson, Melting artificial spin ice. New J. Phys. 14(3), 035009 (2012)

    Article  ADS  Google Scholar 

  50. U.B. Arnalds, A. Farhan, R.V. Chopdekar, V. Kapaklis, A. Balan, E.Th. Papaioannou, M. Ahlberg, F. Nolting, L.J. Heyderman, B. Hjörvarsson, Thermalized ground state of artificial kagome spin ice building blocks. Appl. Phys. Lett. 101(11), 112404 (2012)

    Article  ADS  Google Scholar 

  51. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, L.J. Heyderman, Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat. Phys. (2013)

    Google Scholar 

  52. J.M. Porro, A. Bedoya-Pinto, A. Berger, P. Vavassori, Exploring thermally induced states in square artificial spin-ice arrays. New J. Phys. 15(5), 055012 (2013)

    Article  ADS  Google Scholar 

  53. V. Kapaklis, U.B. Arnalds, A. Farhan, R.V. Chopdekar, A. Balan, A. Scholl, L.J. Heyderman, B. Hjörvarsson, Thermal fluctuations in artificial spin ice. Nat. Nanotechnol. 9(7), 514–519 (2014)

    Article  ADS  Google Scholar 

  54. M.J. Morrison, T.R. Nelson, C. Nisoli, Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration. New J. Phys. 15(4), 045009 (2013)

    Article  ADS  Google Scholar 

  55. G.-W. Chern, M.J. Morrison, C. Nisoli, Degeneracy and criticality from emergent frustration in artificial spin ice. Phys. Rev. Lett. 111, 177201 (2013)

    Google Scholar 

  56. I. Gilbert, G.-W. Chern, S. Zhang, L. O’Brien, B. Fore, C. Nisoli, P. Schiffer, Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice. Nat. Phys. 10(9), 670–675 (2014)

    Article  ADS  Google Scholar 

  57. I. Gilbert, Y. Lao, I. Carrasquillo, L. O’Brien, J.D. Watts, M. Manno, C. Leighton, A. Scholl, C. Nisoli, P. Schiffer, Emergent reduced dimensionality by vertex frustration in artificial spin ice. Nat. Phys. 12(2), 162–165 (2016)

    Article  ADS  Google Scholar 

  58. R.L. Stamps, Artificial spin ice: the unhappy wanderer. Nat. Phys. 10(9), 623–624 (2014)

    Article  Google Scholar 

  59. I. Gilbert, C. Nisoli, P. Schiffer, Frustration by design. Phys. Today 69(7), 54–59 (2016)

    Article  Google Scholar 

  60. C. Nisoli, V. Kapaklis, P. Schiffer, Deliberate exotic magnetism via frustration and topology. Nat. Phys. 13(3), 200–203 (2017)

    Article  Google Scholar 

  61. E. Ising, Beitrag zur theorie des ferromagnetismus. Zeitschrift für Phys. A Hadron. Nucl. 31(1), 253–258 (1925)

    Article  ADS  Google Scholar 

  62. L.P. Kadanoff, Scaling laws for ising models near tc, From Order to Chaos: Essays: Critical, Chaotic and Otherwise (World Scientific, Singapore, 1993), pp. 165–174

    Chapter  Google Scholar 

  63. K.G. Wilson, Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture. Phys. Rev. B 4(9), 3174 (1971)

    Article  ADS  Google Scholar 

  64. K.G. Wilson, J. Kogut, The renormalization group and the ? expansion. Phys. Rep. 12(2), 75–199 (1974)

    Article  ADS  Google Scholar 

  65. B. Mahault, A. Saxena, C. Nisoli, Emergent inequality and self-organized social classes in a network of power and frustration. PloS One 12(2), e0171832 (2017)

    Article  Google Scholar 

  66. E.H. Lieb, Residual entropy of square ice. Phys. Rev. 162(1): 162 (1967)

    Article  ADS  Google Scholar 

  67. E.H. Lieb, Exact solution of the f model of an antiferroelectric. Phys. Rev. Lett. 18(24), 1046 (1967)

    Article  ADS  Google Scholar 

  68. F.Y. Wu, Critical behavior of two-dimensional hydrogen-bonded antiferroelectrics. Phys. Rev. Lett. 22, 1174–1176 (1969)

    Article  ADS  Google Scholar 

  69. R.J. Baxter, Corner transfer matrices. Phys. A 106(1), 18–27 (1981)

    Article  MathSciNet  Google Scholar 

  70. C. Marrows, Experimental studies of artificial spin ice (2016), arXiv:1611.00744

  71. L.J. Heyderman, R.L. Stamps, Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25(36), 363201 (2013)

    Article  Google Scholar 

  72. G.H. Wannier, Antiferromagnetism. The triangular ising net. Phys. Rev. 79(2), 357 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  73. W.F. Giauque, M.F. Ashley, Molecular rotation in ice at 10 k. free energy of formation and entropy of water. Phys. Rev. 43(1), 81 (1933)

    Article  ADS  Google Scholar 

  74. W.F. Giauque, J.W. Stout, The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 k. J. Am. Chem. Soc. 58(7), 1144–1150 (1936)

    Article  ADS  Google Scholar 

  75. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57(12), 2680–2684 (1935)

    Article  Google Scholar 

  76. J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1(8), 515–548 (1933)

    Article  ADS  Google Scholar 

  77. J.F. Nagle, Lattice statistics of hydrogen bonded crystals. i. the residual entropy of ice. J. Math. Phys. 7(8), 1484–1491 (1966)

    Article  ADS  Google Scholar 

  78. C. Castelnovo, R. Moessner, S.L. Sondhi, Magnetic monopoles in spin ice. Nature 451(7174), 42–5 (2008)

    Article  ADS  Google Scholar 

  79. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982)

    MATH  Google Scholar 

  80. F. Rys, Ueber ein zweidimensionales klassisches Konfigurationsmodell, Ph.D. thesis, 1963

    Google Scholar 

  81. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T.H. Zeiske, K.W. Godfrey, Geometrical frustration in the ferromagnetic pyrochlore ho 2 ti 2 o 7. Phys. Rev. Lett. 79(13), 2554 (1997)

    Article  ADS  Google Scholar 

  82. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999)

    Article  ADS  Google Scholar 

  83. I.A. Ryzhkin, On magnetic relaxation in rare earth metal perchlorate metals. Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 128(3), 559–566 (2005)

    Google Scholar 

  84. C.L. Henley, The “coulomb phase” in frustrated systems. Annu. Rev. Condens. Matter Phys. 1(1), 179–210 (2010)

    Article  ADS  Google Scholar 

  85. C. Castelnovo, R. Moessner, S.L. Sondhi, Spin ice, fractionalization, and topological order. Annu. Rev. Condens. Matter Phys. 3(1), 35–55 (2012)

    Article  Google Scholar 

  86. X.-G. Wen, Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40(10), 7387 (1989)

    Article  ADS  Google Scholar 

  87. X.-G. Wen, Quantum orders and symmetric spin liquids. Phys. Rev. B 65(16), 165113 (2002)

    Google Scholar 

  88. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge university press, Cambridge, 2000)

    Google Scholar 

  89. V. Volterra, Sur l’équilibre des corps élastiques multiplement connexes, Annales scientifiques de l’École Normale Supérieure, vol. 24 (Elsevier, 1907), pp. 401–517

    Article  MathSciNet  Google Scholar 

  90. M.V. Kurik, O.D. Lavrentovich, Defects in liquid crystals: homotopy theory and experimental studies. Physics-Uspekhi 31(3), 196–224 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  91. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6(7), 1181 (1973)

    Article  ADS  Google Scholar 

  92. C. Castelnovo, C. Chamon, Topological order and topological entropy in classical systems. Phys. Rev. B 76(17), 174416 (2007)

    Google Scholar 

  93. C.L. Henley, Classical height models with topological order. J. Phys. Condens. Matter 23(16), 164212 (2011)

    Article  ADS  Google Scholar 

  94. R.Z. Lamberty, S. Papanikolaou, C.L. Henley, Classical topological order in abelian and non-abelian generalized height models. Phys. Rev. Lett. 111(24), 245701 (2013)

    Article  ADS  Google Scholar 

  95. L.D.C. Jaubert, M.J. Harris, T. Fennell, R.G. Melko, S.T. Bramwell, P.C.W. Holdsworth, Topological-sector fluctuations and curie-law crossover in spin ice. Phys. Rev. X 3(1), 011014 (2013)

    Google Scholar 

  96. C. Castelnovo, R. Moessner, S.L. Sondhi, Thermal quenches in spin ice. Phys. Rev. Lett. 104(10), 107201 (2010)

    Article  ADS  Google Scholar 

  97. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, Y. Iye, Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73(5), 052411 (2006)

    Google Scholar 

  98. Y. Qi, T. Brintlinger, J. Cumings, Direct observation of the ice rule in an artificial kagome spin ice. Phys. Rev. B 77(9), 094418 (2008)

    Google Scholar 

  99. G. Möller, R. Moessner, Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80(14), 140409 (2009)

    Article  ADS  Google Scholar 

  100. G.-W. Chern, P. Mellado, O. Tchernyshyov, Two-stage ordering of spins in dipolar spin ice on the kagome lattice. Phys. Rev. Lett. 106, 207202 (2011)

    Article  ADS  Google Scholar 

  101. J. Drisko, S. Daunheimer, J. Cumings, Fepd 3 as a material for studying thermally active artificial spin ice systems. Phys. Rev. B 91(22), 224406 (2015)

    Article  ADS  Google Scholar 

  102. S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M.J. Erickson, L. O’Brien, C. Leighton, P.E. Lammert, V.H. Crespi, P. Schiffer, Crystallites of magnetic charges in artificial spin ice. Nature 500(7464), 553–557 (2013)

    Article  ADS  Google Scholar 

  103. N.A. Sinitsyn, Y.V. Pershin, The theory of spin noise spectroscopy: a review. Rep. Prog. Phys. 79(10), 106501 (2016)

    Article  ADS  Google Scholar 

  104. S.A. Crooker, D.G. Rickel, A.V. Balatsky, D.L. Smith, Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance. Nature 431(7004), 49–52 (2004)

    Article  ADS  Google Scholar 

  105. R.J. Glauber, Time-dependent statistics of the ising model. J. Math. Phys. 4(2), 294–307 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  106. L.A.S. Mól, W.A. Moura-Melo, A.R. Pereira, Conditions for free magnetic monopoles in nanoscale square arrays of dipolar spin ice. Phys. Rev. B 82(5), 054434 (2010)

    Article  ADS  Google Scholar 

  107. F.S. Nascimento, L.A.S. Ml, W.A. Moura-Melo, A.R. Pereira, From confinement to deconfinement of magnetic monopoles in artificial rectangular spin ices. New J. Phys. 14(11), 115019 (2012)

    Article  ADS  Google Scholar 

  108. L.A. Mól, R.L. Silva, R.C. Silva, A.R. Pereira, W.A. Moura-Melo, B.V. Costa, Magnetic monopole and string excitations in two-dimensional spin ice. J. Appl. Phys. 106(6), 063913 (2009)

    Article  ADS  Google Scholar 

  109. Y. Nambu, Strings, monopoles, and gauge fields. Phys. Rev. D 10(12), 4262 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  110. Y. Perrin, B. Canals, N. Rougemaille, Extensive degeneracy, coulomb phase and magnetic monopoles in artificial square ice. Nature 540(7633), 410–413 (2016)

    Article  ADS  Google Scholar 

  111. G.-W. Chern, C. Reichhardt, C. Nisoli, Realizing three-dimensional artificial spin ice by stacking planar nano-arrays. Appl. Phys. Lett. 104(1), 013101 (2014)

    Article  ADS  Google Scholar 

  112. A.A. Mistonov, N.A. Grigoryeva, A.V. Chumakova, H. Eckerlebe, N.A. Sapoletova, K.S. Napolskii, A.A. Eliseev, D. Menzel, S.V. Grigoriev, Three-dimensional artificial spin ice in nanostructured co on an inverse opal-like lattice. Phys. Rev. B 87(22), 220408 (2013)

    Article  ADS  Google Scholar 

  113. A.A. Mistonov, I.S. Shishkin, I.S. Dubitskiy, N.A. Grigoryeva, H. Eckerlebe, S.V. Grigoriev, Ice rule for a ferromagnetic nanosite network on the face-centered cubic lattice. J. Exp. Theor. Phys. 120(5), 844–850 (2015)

    Article  ADS  Google Scholar 

  114. I.R.B. Ribeiro, F.S. Nascimento, S.O. Ferreira, W.A. Moura-Melo, C.A.R. Costa, J. Borme, P.P. Freitas, G.M. Wysin, C.I.L. de Araujo, A.R. Pereira, Realization of rectangular artificial spin ice and direct observation of high energy topology (2017), arXiv:1704.07373

  115. P.W. Kasteleyn, The statistics of dimers on a lattice: I. the number of dimer arrangements on a quadratic lattice. Physica 27(12), 1209–1225 (1961)

    Article  ADS  Google Scholar 

  116. P.G. De Gennes, G. Sarma, Tentative model for the smectic b phase. Phys. Lett. A 38(4), 219–220 (1972)

    Article  ADS  Google Scholar 

  117. C.S. O’Hern, T.C. Lubensky, J. Toner, Sliding phases in xy models, crystals, and cationic lipid-dna complexes. Phys. Rev. Lett. 83(14), 2745 (1999)

    Article  ADS  Google Scholar 

  118. S.L. Sondhi, K. Yang, Sliding phases via magnetic fields. Phys. Rev. B 63(5), 054430 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Nisoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisoli, C. (2018). Topology by Design in Magnetic Nano-materials: Artificial Spin Ice. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_4

Download citation

Publish with us

Policies and ethics