Advertisement

Interactively Secure Groups from Obfuscation

  • Thomas AgrikolaEmail author
  • Dennis Hofheinz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10770)

Abstract

We construct a mathematical group in which an interactive variant of the very general Uber assumption holds. Our construction uses probabilistic indistinguishability obfuscation, fully homomorphic encryption, and a pairing-friendly group in which a mild and standard computational assumption holds. While our construction is not practical, it constitutes a feasibility result that shows that under a strong but generic, and a mild assumption, groups exist in which very general computational assumptions hold. We believe that this grants additional credibility to the Uber assumption.

Keywords

Indistinguishability obfuscation Uber assumption 

Notes

Acknowledgements

We would like to thank Antonio Faonio, Pooya Farshim, and Jesper Buus Nielsen for many interesting discussions. We would also like to thank the reviewers for many helpful comments.

References

  1. 1.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_37 CrossRefGoogle Scholar
  2. 2.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_29 CrossRefGoogle Scholar
  3. 3.
    Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. Cryptology ePrint Archive, report 2018/010. https://eprint.iacr.org/2018/010 (2018)
  4. 4.
    Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 446–473. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_19 CrossRefGoogle Scholar
  5. 5.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_13 CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_17 CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 565–594. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_21 CrossRefGoogle Scholar
  8. 8.
    Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_7 CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_14 CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_26 CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemp. Math. 324(1), 71–90 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85538-5_3 CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_1 CrossRefGoogle Scholar
  14. 14.
    Brown, D.R.L.: Generic Groups, Collision Resistance, and ECDSA. Des. Codes Cryptograph. 35(1), 119–152 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Brown, D.R.L.: Toy factoring by Newton’s method. IACR ePrint Archive, report 2008/149 (2008). http://eprint.iacr.org/2008/149
  16. 16.
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052255 CrossRefGoogle Scholar
  17. 17.
    Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_19 CrossRefGoogle Scholar
  18. 18.
    Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36, 587–592 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader reductions of q-type assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 655–681. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_22 CrossRefGoogle Scholar
  20. 20.
    Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_34 CrossRefGoogle Scholar
  21. 21.
    Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_1 CrossRefGoogle Scholar
  22. 22.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4 CrossRefGoogle Scholar
  23. 23.
    Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_36 Google Scholar
  24. 24.
    Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_28 Google Scholar
  25. 25.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of FOCS 2013. IEEE Computer Society, pp. 40–49 (2013)Google Scholar
  28. 28.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D thesis. Stanford University (2009)Google Scholar
  29. 29.
    Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  30. 30.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24 CrossRefGoogle Scholar
  31. 31.
    Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055744 Google Scholar
  32. 32.
    Koblitz, N., Menezes, A.: The brave new world of bodacious assumptions in cryptography. Not. AMS 57, 357–365 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Lipmaa, H.: On the CCA1-security of Elgamal and Damgård’s Elgamal. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 18–35. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21518-6_2 CrossRefGoogle Scholar
  34. 34.
    Meiklejohn, S.: An extension of the Groth-Sahai proof system. Ph.D thesis. Brown University (2009)Google Scholar
  35. 35.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 427–437. ACM (1990)Google Scholar
  36. 36.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_28 CrossRefGoogle Scholar
  37. 37.
    Wee, H.: On obfuscating point functions. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 523–532. ACM (2005)Google Scholar
  38. 38.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_15 Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations