Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.
CrossRef
Google Scholar
Bransford, J. D., Sherwood, R. D., Hasselbring, T. S., Kinzer, C. K., & Williams, S. M. (1990). Anchored instruction: Why we need it and how technology can help. Cognition, Education, and Multimedia: Exploring Ideas in High Technology, 115–141.
Google Scholar
Bussi, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective (pp. 746–783). New York: Handbook of International Research in Mathematics Education.
Google Scholar
Donevska-Todorova, A. (2012). Connections between secondary and tertiary curricula for linear algebra with focus on the concept of a determinant—Proposal with technology support. In A. Filler & M. Ludwig (Hrsg.), Vernetzungen und Anwendungen im Geometrieunterricht. Ziele und Visionen 2020 (Vol. 28, pp. 109–120).
Google Scholar
Donevska-Todorova, A. (2014). Three modes of description and thinking of linear algebra concepts at upper secondary education. In J. Roth & J. Ames (Eds.), Beiträge zum Mathematikunterricht 2014 48(1), 305–308.
Google Scholar
Donevska-Todorova, A. (2015). Conceptual understanding of dot product of vectors in a dynamic geometry environment. The Electronic Journal of Mathematics and Technology, 9(3).
Google Scholar
Donevska-Todorova, A. (2016). Procedural and conceptual understanding in undergraduate linear algebra. In K. Krainer & N. Vondrova (Eds.), Proceedings INDRUM 2016 (accepted for publishing).
Google Scholar
Donevska-Todorova, A., & Steward, S. (2017, to appear). Teaching and learning linear algebra with digital resources. In S. Steward, C. Andrews-Larson, A. Berman & M. Zandieh (Eds.), Challenges and strategies in teaching linear algebra. Springer.
Google Scholar
Dray, T., & Manogue, C. A. (2008). The geometry of the dot and cross products. AMC, 10, 12.
Google Scholar
Edwards, B. S., Dubinsky, E., & McDonald, M. A. (2005). Advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 15–25.
CrossRef
Google Scholar
Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.
CrossRef
Google Scholar
Filler, A., & Donevska-Todorova, A. (2012). Der Vektorbegriff. Verschiedene Wege zu seiner Einführung. Mathematik Lehren, 172(6), 47–51.
Google Scholar
Harel, G., & Sowder, L. (2005). Advanced mathematical-thinking at any age: Its nature and its development. Mathematical Thinking and Learning, 7(1), 27–50.
CrossRef
Google Scholar
Hegedus, S., Dalton, S., & Moreno-Armella, L. (2007). Technology that mediates and participates in mathematical cognition. In Proceedings of CERME5, WG 9. Tools and Technologies in Mathematical Didactics 1331, 1419–1428.
Google Scholar
Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In On the teaching of linear algebra (pp. 191–207). Netherlands: Springer.
Google Scholar
Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13(2), 135–157.
CrossRef
Google Scholar
Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68(2), 99–111.
CrossRef
Google Scholar
Pea, R. D. (1987). Cognitive technologies for mathematics education. Cognitive Science and Mathematics Education, 89–122.
Google Scholar
Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM Mathematics Education, 40(2), 165–178.
CrossRef
Google Scholar
Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In On the teaching of linear algebra (pp. 209–246). Netherlands: Springer.
Google Scholar
Tall, D. (1991). Advanced mathematical thinking (Vol. 11). Germany: Springer Science & Business Media.
Google Scholar
Tall, D. (2003). Using technology to support an embodied approach to learning concepts in mathematics. Historia e tecnologia no Ensino da Matemática, 1, 1–28.
Google Scholar
Tall, D. (2004). Building theories: The three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.
Google Scholar