Skip to main content

Recursive Exploration Space for Concepts in Linear Algebra

Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

The complexity of the role of digital media in facilitation of learning mathematics can be approached by utilizing multiple theoretical frameworks. In this chapter, three theoretical frameworks have been applied with an aim to analyze the contribution of a created Dynamic Geometry Environment in developing deep understanding of concepts in linear algebra . The first one, which is in the main focus, refers to the integration of different description and thinking modes in linear algebra , such as synthetic-geometric, arithmetic and analytic-structural (Hillel in On the teaching of linear algebra. Springer, Netherlands, pp. 191–207, 2000; Sierpinska in On the teaching of linear algebra. Springer, Netherlands, pp. 209–246, 2000). The second one is related to the attributes of Dynamic Technological Environments, such as Recursive Exploration Space (Hegedus et al. in Proceedings of CERME5, WG 9. Tools and technologies in mathematical didactics 1331, pp. 1419–1428, 2007); and the third one is semiotic mediation (Bussi and Mariotti in Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective handbook of international research in mathematics education. New York, pp. 746–783, 2008) of the dragging tool. A landscape of networking strategies for connecting theories (Prediger et al. in ZDM Math Educ 40(2):165–178, 2008) has been exploited as an attempt to ensure quality of the analysis.

Keywords

  • Linear algebra
  • Dynamic geometry environment
  • Recursive exploration space
  • Thinking modes
  • Semiotic mediation
  • Networking strategies
  • Axiomatic properties

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76575-4_20
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76575-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 20.1

References

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.

    CrossRef  Google Scholar 

  • Bransford, J. D., Sherwood, R. D., Hasselbring, T. S., Kinzer, C. K., & Williams, S. M. (1990). Anchored instruction: Why we need it and how technology can help. Cognition, Education, and Multimedia: Exploring Ideas in High Technology, 115–141.

    Google Scholar 

  • Bussi, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective (pp. 746–783). New York: Handbook of International Research in Mathematics Education.

    Google Scholar 

  • Donevska-Todorova, A. (2012). Connections between secondary and tertiary curricula for linear algebra with focus on the concept of a determinant—Proposal with technology support. In A. Filler & M. Ludwig (Hrsg.), Vernetzungen und Anwendungen im Geometrieunterricht. Ziele und Visionen 2020 (Vol. 28, pp. 109–120).

    Google Scholar 

  • Donevska-Todorova, A. (2014). Three modes of description and thinking of linear algebra concepts at upper secondary education. In J. Roth & J. Ames (Eds.), Beiträge zum Mathematikunterricht 2014 48(1), 305–308.

    Google Scholar 

  • Donevska-Todorova, A. (2015). Conceptual understanding of dot product of vectors in a dynamic geometry environment. The Electronic Journal of Mathematics and Technology, 9(3).

    Google Scholar 

  • Donevska-Todorova, A. (2016). Procedural and conceptual understanding in undergraduate linear algebra. In K. Krainer & N. Vondrova (Eds.), Proceedings INDRUM 2016 (accepted for publishing).

    Google Scholar 

  • Donevska-Todorova, A., & Steward, S. (2017, to appear). Teaching and learning linear algebra with digital resources. In S. Steward, C. Andrews-Larson, A. Berman & M. Zandieh (Eds.), Challenges and strategies in teaching linear algebra. Springer.

    Google Scholar 

  • Dray, T., & Manogue, C. A. (2008). The geometry of the dot and cross products. AMC, 10, 12.

    Google Scholar 

  • Edwards, B. S., Dubinsky, E., & McDonald, M. A. (2005). Advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 15–25.

    CrossRef  Google Scholar 

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.

    CrossRef  Google Scholar 

  • Filler, A., & Donevska-Todorova, A. (2012). Der Vektorbegriff. Verschiedene Wege zu seiner Einführung. Mathematik Lehren, 172(6), 47–51.

    Google Scholar 

  • Harel, G., & Sowder, L. (2005). Advanced mathematical-thinking at any age: Its nature and its development. Mathematical Thinking and Learning, 7(1), 27–50.

    CrossRef  Google Scholar 

  • Hegedus, S., Dalton, S., & Moreno-Armella, L. (2007). Technology that mediates and participates in mathematical cognition. In Proceedings of CERME5, WG 9. Tools and Technologies in Mathematical Didactics 1331, 1419–1428.

    Google Scholar 

  • Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In On the teaching of linear algebra (pp. 191–207). Netherlands: Springer.

    Google Scholar 

  • Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13(2), 135–157.

    CrossRef  Google Scholar 

  • Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68(2), 99–111.

    CrossRef  Google Scholar 

  • Pea, R. D. (1987). Cognitive technologies for mathematics education. Cognitive Science and Mathematics Education, 89–122.

    Google Scholar 

  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM Mathematics Education, 40(2), 165–178.

    CrossRef  Google Scholar 

  • Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In On the teaching of linear algebra (pp. 209–246). Netherlands: Springer.

    Google Scholar 

  • Tall, D. (1991). Advanced mathematical thinking (Vol. 11). Germany: Springer Science & Business Media.

    Google Scholar 

  • Tall, D. (2003). Using technology to support an embodied approach to learning concepts in mathematics. Historia e tecnologia no Ensino da Matemática, 1, 1–28.

    Google Scholar 

  • Tall, D. (2004). Building theories: The three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Donevska-Todorova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Donevska-Todorova, A. (2018). Recursive Exploration Space for Concepts in Linear Algebra. In: Ball, L., Drijvers, P., Ladel, S., Siller, HS., Tabach, M., Vale, C. (eds) Uses of Technology in Primary and Secondary Mathematics Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-76575-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76575-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76574-7

  • Online ISBN: 978-3-319-76575-4

  • eBook Packages: EducationEducation (R0)