R. El-Mallawany, Introduction to Tellurite glasses. Springer Series Mater. Sci. 254, 1–13 (2017)
CrossRef
Google Scholar
S.H. Elazoumi, H.A.A. Sidek, Y.S. Rammah, R. El-Mallawany, M.K. Halimah, K.A. Matori, M.H.M. Zaid, Effect of PbO on optical properties of tellurite glass. Res. Phys. 8, 16–25 (2018)
Google Scholar
H.M.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 320(11), 2655 (2002)
Google Scholar
R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Ultrasonic studies of (TeO2)50–(V2O5)50−x(TiO2)x glasses. Mater. Chem. Phys. 95, 321 (2006)
CrossRef
Google Scholar
R. El-Mallawany, A. Abousehly, E. Yousef, Elastic moduli of tricomponent tellurite glasses TeO2-V2O5-Ag2O. J. Mater. Sci. Lett. 19, 409 (2000)
CrossRef
Google Scholar
R. El-Mallawany, Specific heat capacity of semiconducting glasses: binary vanadium tellurite. Phys. Status Solidi A 177, 439 (2000)
ADS
CrossRef
Google Scholar
D. Souri, Z. Torkashvand, Thermomechanical properties of Sb2O3-TeO2-V2O5 glassy systems: Thermal stability, glass-forming tendency and Vickers hardness. J. Electron. Mater. 4(2017), 46 (2158)
Google Scholar
D. Souri, The study of glass transition temperature in Sb–V2O5–TeO2 glasses at different heating rates. Indian J. Phys. 12(2015), 89 (1277)
Google Scholar
R. El-Mallawany, M. Sidkey, A. Khafagy, H. Afifi, Ultrasonic attenuation of tellurite glasses. Mater. Chem. Phys. 37(2), 197 (1994)
CrossRef
Google Scholar
I.Z. Hager, R. El-Mallawany, A. Bulou, Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd, Sm and Er rare earth ions. Phys. B Condens. Matter 406(4), 972 (2011)
ADS
CrossRef
Google Scholar
A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72 (2017)
CrossRef
Google Scholar
D. Souri, The study of crystallization kinetics and determination of Avrami index in TeO2-V2O5-NiO amorphous samples by calorimetric analysis. Iranian J. Cer. Sci. Eng. 5(3), 73 (2016)
Google Scholar
D. Souri, Y. Shahmoradi, Calorimetric analysis of non-crystalline TeO2- V2O5-Sb2O3: Determination of crystallization activation energy, Avrami index and stability parameter. J. Therm. Anal. Calorim. 129, 601 (2017)
CrossRef
Google Scholar
A. El-Adawy, R. El-Mallawany, Elastic modulus of tellurite glasses. J. Mater. Sci. Lett. 15, 2065 (1996)
Google Scholar
I.Z. Hager, R. El-Mallawany, Preparation and structural studies in the (70− x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45(4), 897 (2010)
ADS
CrossRef
Google Scholar
M.M. El-Zaidia, A.A. Ammar, R.A. El-Mallwany, Infra-red spectra, electron spin resonance spectra, and density of (TeO2) 100− x–(WO3) x and (TeO2) 100− x–(ZnCl2) x glasses. Phys. Status Solidi A 91(2), 637 (1985)
ADS
CrossRef
Google Scholar
R.A. Montani, M.A. Frechero, The conductive behavior of silver vanadium molybdenum tellurite glasses: Part II. Solid State Ionics 158, 327 (2003)
CrossRef
Google Scholar
N.S. Hussain, G. Hungerford, R. El-Mallawany, M.J.M. Gomes, M.A. Lopes, N. Ali, J.D. Santos, S. Buddhudu, Absorption and emission analysis of RE3+ (Sm3+ and Dy3+): Lithium Boro Tellurite glasses. J. Nanosci. Nanotechnol. 9(6), 3672 (2009)
CrossRef
Google Scholar
R. El-Mallawany, A. Abd El-Moneim, Comparison between the elastic moduli of tellurite and phosphate glasses. Phys. Status Solidi A 166(2), 829 (1998)
ADS
CrossRef
Google Scholar
M.A. Sidkey, R. El-Mallawany, A. Abousehly, Y.B. Saddeek, Elastic properties of tellurite glasses. Glass Sci. Technol.: Glastechnische Berichte 75, 87 (2002)
Google Scholar
M.M. Elkholy, R.A. El-Mallawany, Ac conductivity of tellurite glasses. Mater. Chem. Phys. 40(3), 163 (1995)
CrossRef
Google Scholar
D. Souri, R. Ghasemi, M. Shiravand, The study of high-dc electric field effect on the conduction of V2O5–Sb–TeO2 glasses and the applicability of an electrothermal model. J. Mater. Sci. 50(6), 2554 (2015)
ADS
CrossRef
Google Scholar
D. Souri, Glass transition and fragility of telluro-vanadate glasses containing antimony oxide. J. Mater. Sci. 47, 625 (2012)
ADS
CrossRef
Google Scholar
D. Souri, Study of the heating rate effect on the glass transition properties of (60 -x)V2O5- x Sb2O3-40TeO2 oxide glasses using differential scanning calorimetry (DSC). Measurement 44, 2049 (2011)
CrossRef
Google Scholar
S.A. Salehizadeh, D. Souri, The glassy state of the amorphous V2O5-NiO-TeO2 samples. J. Phys. Chem. Solids 72, 1381 (2011)
ADS
CrossRef
Google Scholar
D. Souri, H. Zaliani, E. Mirdawoodi, M. Zendehzaban, Thermal stability of Sb-V2O5-TeO2 semiconducting oxide glasses using thermal analysis. Measurement 82, 19 (2016)
CrossRef
Google Scholar
D. Souri, F. Honarvar, Z.E. Tahan, Characterization of semiconducting mixed electronic-ionic TeO2-V2O5-Ag2O glasses by employing ultrasonic measurements and Vicker’s microhardness. J. Alloys Compd. 699, 601 (2017)
CrossRef
Google Scholar
P.Y. Shih, S.W. Yung, C.Y. Chen, H.S. Liu, T.S. Chiu, The effect of SnO and PbCl2 on properties of Stanous Chlorophosphate glasses. Mater. Chem. Phys. 50, 63 (1997)
CrossRef
Google Scholar
K. Pradeesh, J.C. Oton, V.K. Agotiya, M. Raghavendra, G.V. Prakash, Optical properties of Er3+ doped alkali chlorophosphate glasses for optical amplifiers. Opt. Mater. 31, 155 (2008)
ADS
CrossRef
Google Scholar
R.K. Brow, Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263/264, 1 (2000)
ADS
CrossRef
Google Scholar
S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh, Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes. J. Power Sources 114, 346 (2003)
ADS
CrossRef
Google Scholar
M. Shapaan, Effect of heat treatment on the hyperfine structure and the dielectric properties of 40P2O5–40V2O5–20Fe2O3 oxide glass. J. Non-Cryst. Solids 356, 314 (2010)
ADS
CrossRef
Google Scholar
M. Altaf, M.A. Chaudhry, Physical properties of lithium containing cadmium phosphate glasses. J. Mod. Phys. 1, 201 (2010)
CrossRef
Google Scholar
A. Abdel-Kader, R. El-Mallawany, M.M. Elkholy, Network structure of tellurite phosphate glasses: Optical absorption and infrared spectra. J. Appl. Phys. 73(1), 71 (1993)
ADS
CrossRef
Google Scholar
M.S. Dahiya, S. Khasa, A. Agarwal, Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO2+ ions. J. Therm. Anal. Calorim. 123(1), 457 (2016)
CrossRef
Google Scholar
M.S. Dahiya, S. Khasa, A. Agarwal, Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses. J. Mol. Struct. 1086, 172 (2015)
ADS
CrossRef
Google Scholar
Y.B. Saddeek, A. Aly, S.A. Bashier, Optical study of lead borosilicate glasses. Phys. B Condens. Matter 405, 2407 (2010)
ADS
CrossRef
Google Scholar
X.X. Pi, X.-H. Cao, Z.-X. Fu, L. Zhang, P.D. Han, L.X. Wang, Q.T. Zhang, Application of Te-based glass in silicon solar cells. Acta Metall. Sin. (Engl. Lett.) 28(2), 223 (2015)
CrossRef
Google Scholar
D. Souri, Suggestion for using the thermal stable thermoelectric glasses as a strategy for improvement of photovoltaic system efficiency: Seebeck coefficients of tellurite-vanadate glasses containing antimony oxide. Sol. Energy 139, 19 (2016)
ADS
CrossRef
Google Scholar
J. Koen, M. Res, R. Heckroodt, V. Hasson, Investigation of the photochromic effect in erbium-doped tellurite glasses. J. Phys. D. Appl. Phys. 9, 13 (1976)
ADS
CrossRef
Google Scholar
R. Braunstein, Photochromic and electrochromic properties of tungstate glasses. J Solid State Commun 28, 839 (1978)
ADS
CrossRef
Google Scholar
I. Morozova, A. Yakhind, Sov. J. Glas. Phys. Chem. 6, 83 (1980)
Google Scholar
D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B Lasers Opt. 119(2), 273 (2015)
ADS
CrossRef
Google Scholar
R. El-Mallawany, Y.S. Rammah, A. El Adawy, Z. Wassel, Optical and thermal properties of some tellurite glasses. Am. J. Optics Photon. 5(2), 11 (2017)
CrossRef
Google Scholar
M.H. Ehsani, R. Zarei Moghadam, H.R. Gholipour Dizaji, P. Kameli, Surface modification of ZnS films by applying an external magnetic field in vacuum chamber. Mater Res Expr 4(9), 096408 (2017)
ADS
CrossRef
Google Scholar
D. Souri, A.R. Khezripour, M. Molaei, M. Karimipour, ZnSe and copper-doped ZnSe nanocrystals (NCs): Optical transmittance and precise determination of energy band gap beside their exact optical transition type and Urbach energy. Curr. Appl. Phys. 17, 41 (2017)
ADS
CrossRef
Google Scholar
A. Kirsch, M.M. Murshed, M. Schowalter, A. Rosenauer, T.M. Gesing, Nanoparticle precursor into polycrystalline Bi2Fe4O9: An evolutionary investigation of structural, morphological, optical, and vibrational properties. J. Phy. Chem. C 120(33), 18831 (2016)
CrossRef
Google Scholar
T. Katsuhisa, Y. Toshinobu, Y. Hiroyoki, K. Kanichi, Structure and ionic conductivity of LiCl-Li2O-TeO2 glasses. J. Non-Cryst. Solids 103, 250 (1988)
CrossRef
Google Scholar
D. Souri, M. Mohammadi, H. Zaliani, Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses. Electron. Mater. Lett. 10(6), 1103 (2014)
ADS
CrossRef
Google Scholar
H.S. Farhan, Study of some physical and optical properties of Bi2O3-TeO2-V2O5 glasses. Aust. J. Basic Appl. Sci. 11(9), 171 (2017)
Google Scholar
H. Mori, H. Sakata, Seebeck coefficient of V2O5-R2O3-TeO2 (R=Sb or Bi) glasses. J. Mater. Sci. 31, 1621 (1996)
ADS
CrossRef
Google Scholar
J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569 (1972)
ADS
CrossRef
Google Scholar
D. Souri, S.A. Salehizadeh, Effect of NiO content on the optical band gap, refractive index and density of TeO2-V2O5-NiO glasses. J. Mater. Sci. 44, 5800 (2009)
ADS
CrossRef
Google Scholar
D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2–xSb2O3 glasses. J. Non-Cryst. Solids 355, 1597 (2009)
ADS
CrossRef
Google Scholar
D. Souri, Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: Inducing critical Ag2O/V2O5 ratio. J. Non-Cryst. Solids 475, 136 (2017)
ADS
CrossRef
Google Scholar
J.A. Duffy, M.D. Ingram, Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses. J. Inorg. Nucl. Chem. 37, 1203 (1975)
CrossRef
Google Scholar
D. Souri, Crystallization kinetic of Sb–V2O5–TeO2 glasses investigated by DSC and their elastic moduli and Poisson’s ratio. Phys. B Condens. Matter 456, 185 (2015)
ADS
CrossRef
Google Scholar
V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides.1. J. Appl. Phys. 79, 1736 (1996)
ADS
CrossRef
Google Scholar
H. Fritzsche, Optical and electrical energy gap in amorphous semiconductors. J. Non-Cryst. Solids 6, 49 (1971)
ADS
CrossRef
Google Scholar
J.T. Edmond, Measurement of electrical conductivity and optical absorption in chalcogenide glasses. J. Non-Cryst. Solids 1, 39 (1968)
ADS
CrossRef
Google Scholar
N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)
Google Scholar
M. Molaei, A.R. Khezripour, M. Karimipour, Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 317, 236 (2014)
ADS
CrossRef
Google Scholar
L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E. V. Santiago; an alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)
ADS
CrossRef
Google Scholar
S.D. Hart, G.R. Maskaly, B. Temelkuran, External reflection from omnidirectional dielectric mirror fibers. Science 296, 510 (2002)
ADS
CrossRef
Google Scholar
J.S. Lou, J.M. Olson, Y. Zhang, A. Mascarenhas, Near-band-gap reflectance anisotropy in ordered Ga0.5In0.5P. Phys. Rev. B 55, 16385 (1997)
ADS
CrossRef
Google Scholar
C. Kittel, Introduction to Solid State Physics, 7th edn. (Singapore, Wiley (ASIA) Pte. Ltd., 1996)
MATH
Google Scholar
L. Changshi, L. Feng, Natural path for more precise determination of band gap by optical spectra. Opt. Commun. 285, 2868 (2012)
ADS
CrossRef
Google Scholar
D. Souri, M. Elahi, The DC electrical conductivity of TeO2-V2O5-MoO3 amorphous bulk samples. Phys. Scr. 75(2), 219 (2007)
ADS
CrossRef
Google Scholar
D. Souri, Fragility, DSC and elastic moduli studies on tellurite-vanadate glasses containing molubdenum. Measurement 44, 1904 (2011)
CrossRef
Google Scholar
D. Souri, S.A. Salehizadeh, Glass transition, fragility, and structural features of amorphous nickel–tellurate–vanadate samples. J. Therm. Anal. Calorim. 112(2), 689 (2013)
CrossRef
Google Scholar
D. Souri, DSC and elastic moduli studies on tellurite-vanadate glasses containing antimony oxide. Eur. Phys. J. B 84, 47 (2011)
ADS
CrossRef
Google Scholar
M. Elahi, D. Souri, Study of optical absorption and optical band gap determination of thin amorphous TeO2-V2O5-MoO3 blown films. Indian J. Pure Appl. Phys. 44, 468 (2006)
Google Scholar
D. Souri, Effect of molybdenum tri-oxide molar ratio on the optical and some physical properties of tellurite-vanadate-molybdate glasses. Measurement 44, 717 (2011)
CrossRef
Google Scholar
D. Souri, Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses. J. Non-Cryst. Solids 470, 112 (2017)
ADS
CrossRef
Google Scholar
D. Souri, Z.E. Tahan, S.A. Salehizadeh, DC electrical conductivity of Ag2O -TeO2-V2O5 glassy systems. Indian J. Phys. 90(4), 407 (2016)
ADS
CrossRef
Google Scholar
R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instr. 16, 1214 (1983)
ADS
CrossRef
Google Scholar
J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instr. 9, 1002 (1976)
ADS
CrossRef
Google Scholar
D. Souri, Investigation of glass transition temperature in (60-x)V2O5-40TeO2-xNiO glasses at different heating rates. J. Mater. Sci. 46, 6998 (2011)
ADS
CrossRef
Google Scholar
K. Aida, T. Komatsu, V. Dimitrov, Thermal stability, electronic polarizability and optical basicity of ternary tellurite glasses. Phys. Chem. Solids 42(2), 103 (2001)
Google Scholar
C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78, 2673 (1974)
CrossRef
Google Scholar
A.A. Abu-Sehly, M. Abu El-Oyoun, A.A. Elabbar, Study of the glass transition in amorphous se by differential scanning calorimetry. Thermochemica Acta 472, 25 (2008)
CrossRef
Google Scholar
S. Weyer, H. Huth, C. Schick, Application of an extended tool-Narayanaswamy-Moynihan model. part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC. Ploymer 46, 12240 (2005)
CrossRef
Google Scholar
S. Grujic, N. Blagojevic, M. Tosic, V. Zivanovic, J. Nikolic, Crystallization kinetics of K2O·TiO2·3GeO2 glass studied by DTA. Sci. Sinter. 40, 333 (2008)
CrossRef
Google Scholar
A. Hruby, Evaluation of glass-forming tendency by means of DTA. Czechoslovak J. Phys. B 22, 1187 (1972)
ADS
CrossRef
Google Scholar
M. Saad, M. Poulain, Glass forming ability criterion. Mater. Sci. Forum 19, 11 (1987)
CrossRef
Google Scholar
P. Subbalakshmi, N. Veeaiah, Study of CaO-WO3-P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J. Non-Cryst. Solids 298, 89 (2002)
ADS
CrossRef
Google Scholar
D.M. Rowe, Thermoelectrics Handbook (CRC Press, Boca Raton, 2005), p. 60
CrossRef
Google Scholar
R.R. Heikes, A.A. Maradudine, R.C. Miller, Une etude des properietes de transport des semiconducteures de valence mixte. Ann. Phys. NY 8, 733 (1963)
CrossRef
Google Scholar
R.R. Heikes, in Thermoelectricity, ed. by R. R. Heikes, R. W. Ure (Eds), (Interscience, New York, 1961), p. 2502
Google Scholar
D. Souri, Z. Siahkali, M. Moradi, Thermoelectric power measurements of xSb-(60-x)V2O5-40TeO2 glasses. J. Electron. Mater. 45(1), 307 (2016)
ADS
CrossRef
Google Scholar
D. Souri, Seebeck coefficient of Tellurite- vanadate glasses containing molybdenum. J. Phys. D:Appl. Phys 41, 105102 (2008.) (3pp)
ADS
CrossRef
Google Scholar
D. Souri, P. Azizpour, H. Zaliani, Electrical conductivity of V2O5–TeO2–Sb glasses at low temperatures. J. Electron. Mater. 43(9), 3672 (2014)
ADS
CrossRef
Google Scholar
D. Souri, Small polaron hopping conduction in tellurium based glasses containing vanadium and antimony. J. Non-Cryst. Solids 356, 2181 (2010)
ADS
CrossRef
Google Scholar
A. Keyhani, M.N. Marwali, M. Dai, Integration of Green and Renewable Energy in Electric Power System (Wiley, Hoboken, 2009)
CrossRef
Google Scholar
S. Leva, D. Zaninelli, Technical and financial analysis for hybrid photovoltaic power generation systems. WSEAS Transact. Power Syst. 5(1), 831 (2006)
Google Scholar
S. Leva, D. Zaninelli, R. Contino, Integrated renewable sources for supplying remote power systems. WSEAS Transact. Power Syst. 2(2), 41 (2007)
Google Scholar
G.K. Singh, Solar power generation by PV (photovoltaic) technology. Renew. Sust. Energ. Rev. 53, 1013 (2013)
Google Scholar
B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sust. Energ. Rev. 15, 1625–1636 (2011)
CrossRef
Google Scholar
Photovoltaic Efficiency – Inherent and System, solar facts, http://www.solar-facts.com/panels/panel-efficiency.php (Accessed 2015-6-5)