Skip to main content

Microstructured Optical Fiber-Based Plasmonic Sensors

Abstract

Surface plasmon resonance (SPR) is a considerably growing optical sensing approach which has been employed in wide range of applications including medical diagnostics, biological and chemical analyte detection, environmental monitoring, and food safety to security. SPR sensing technique shows high sensitive nature due to small change of sample refractive index, compared to other optical sensing techniques. Recently, microstructured optical fiber -based plasmonic sensors have shown great development due to its compact structure and light controlling capabilities in unprecedented ways. The goal of this chapter is to (1) describe the principle operation of plasmonic sensors, (2) discuss the optical properties of plasmonic materials, (3) compare and contrast the different types of microstructured optical fiber -based plasmonic sensors, and (4) highlight the main challenges of microstructured plasmonic sensors and possible solutions.

Keywords

  • Surface plasmon resonance
  • Microstructured optical fiber
  • Optical fiber sensors
  • Optical sensing and sensors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76556-3_9
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76556-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2

Reprinted with permission from Macmillan Publishers Ltd. [66]. c(i) Microdevice installed with the SPR fiber sensor head and (ii) the experimental setup for the detection of polymerase chain reaction amplification with SPR fiber sensor system. Reprinted with permission from Elsevier B.V. [95]. d Smartphone-based fiber optic SPR sensor for pregnancy test. Reprinted with permission from Optical Society of America [96]. e(i) Schematic of the plasmonic fiber optic sensing system for in situ biofilm monitoring, (ii) SEM image of the gold-coated optic fiber sensor, and (iii) the zoomed configuration of the gold-coated sensor probe. Reprinted with permission from the American Chemical Society [97]

Fig. 9.3

Reprinted with permission from Springer [108]

Fig. 9.4

Reprinted with permission from MDPI AG [42]. b(i) Cross-sectional view of the open ring PCF sensor, (ii) optical field distribution of the plasmonic mode, (iii) optical field distribution of the fundamental core-guided mode, and (iv) loss spectra for the variation of gold layer thickness. Reprinted with permission from Optical Society of America [112]. c(i) Cross-sectional view of the gold nanowire-based PCF sensor, (ii) optical field distribution of the plasmonic mode, (iii) optical field distribution of the fundamental core-guided mode, and (iv) loss spectra for the variation of analyte refractive index [113]

Fig. 9.5

Reprinted with permission from Optical Society of America [119]. b(i) Cross-sectional view of the bimetallic-slotted PCF sensor, (ii) loss spectra for the variation of silver layer thickness in quasi-TM mode, and (iii) loss spectra for the variation of silver layer thickness in quasi-TE mode. Reprinted with permission from SPIE [122]. c(i) Cross-sectional view of the PCF sensor with elliptical air holes, and (ii) loss spectra for the variation of analyte refractive index. Reprinted with permission from Optical Society of America [50]. d(i) Cross-sectional view of the PCF sensor with four microfluidic channels, and (ii) optical field distribution of the fundamental mode. Reprinted with permission from Springer [118]

Fig. 9.6

Reprinted with permission from IEEE [123]

Fig. 9.7

Reprinted with permission from Optical Society of America [128]. c Cross-sectional view of the D-shaped PCF with rectangular lattice air holes [46]. d(i) Cross-sectional view of the quasi-D-shaped PCF sensor and (ii) amplitude sensitivity for the variation of analyte refractive index from 1.33 to 1.37. Reprinted with permission from IEEE [132]. e Cross-sectional view of the hollow-core D-shaped PCF sensor with hexagonal lattice. Reprinted with permission from Springer [133]

Fig. 9.8

Reprinted with permission from Optical Society of America [109]

Fig. 9.9

Reprinted with permission from SPIE [140]. b(i) Cross-sectional view of the annular core PCF sensor and (ii) dependence of optical loss on the analyte channel width for different wavelengths [141]. c(i) Cross-sectional view of the copper–graphene-based PCF sensor and (ii) linear fitting of the resonance wavelengths. Reprinted with permission from IEEE [136]. d Cross-sectional view of the hexagonal lattice PCF sensor with external sensing. Reprinted with permission from IEEE [45]

References

  1. C.E. Berger, J. Greve, Differential SPR immunosensing. Sens. Actuators B Chem. 63, 103–108 (2000)

    CrossRef  Google Scholar 

  2. I. Stemmler, A. Brecht, G. Gauglitz, Compact surface plasmon resonance-transducers with spectral readout for biosensing applications. Sens. Actuators B Chem. 54, 98–105 (1999)

    CrossRef  Google Scholar 

  3. Y. Fang, Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4, 583–595 (2006)

    CrossRef  Google Scholar 

  4. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    CrossRef  Google Scholar 

  5. R. Jorgenson, S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 12, 213–220 (1993)

    CrossRef  Google Scholar 

  6. B.D. Gupta, R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. 2009 (2009)

    Google Scholar 

  7. B. Lee, S. Roh, J. Park, Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15, 209–221 (2009)

    CrossRef  Google Scholar 

  8. C. Mouvet, R. Harris, C. Maciag, B. Luff, J. Wilkinson, J. Piehler et al., Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 338, 109–117 (1997)

    CrossRef  Google Scholar 

  9. C.P. Cahill, K.S. Johnston, S.S. Yee, A surface plasmon resonance sensor probe based on retro-reflection. Sens. Actuators B Chem. 45, 161–166 (1997)

    CrossRef  Google Scholar 

  10. Y.-C. Cheng, W.-K. Su, J.-H. Liou, Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39, 311–314 (2000)

    CrossRef  Google Scholar 

  11. J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, S.S. Yee, Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol. 75, 61–69 (2002)

    CrossRef  Google Scholar 

  12. V. Koubová, E. Brynda, L. Karasová, J. Škvor, J. Homola, J. Dostálek et al., Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B Chem. 74, 100–105 (2001)

    CrossRef  Google Scholar 

  13. A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse et al., On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 149, 194–198 (2010)

    CrossRef  Google Scholar 

  14. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)

    CrossRef  Google Scholar 

  15. G. Ashwell, M. Roberts, Highly selective surface plasmon resonance sensor for NO2. Electron. Lett. 32, 2089–2091 (1996)

    CrossRef  Google Scholar 

  16. M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, K. Cammann, Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical 34, 328–333 (1996)

    CrossRef  Google Scholar 

  17. P.J. Kajenski, Tunable optical filter using long-range surface plasmons. Opt. Eng. 36, 1537–1541 (1997)

    CrossRef  Google Scholar 

  18. Y. Wang, Voltage-induced color-selective absorption with surface plasmons. Appl. Phys. Lett. 67, 2759–2761 (1995)

    CrossRef  Google Scholar 

  19. J.S. Schildkraut, Long-range surface plasmon electrooptic modulator. Appl. Opt. 27, 4587–4590 (1988)

    CrossRef  Google Scholar 

  20. G.T. Sincerbox, J.C. Gordon, Small fast large-aperture light modulator using attenuated total reflection. Appl. Opt. 20, 1491–1496 (1981)

    CrossRef  Google Scholar 

  21. K.S. Johnston, S.R. Karlsen, C.C. Jung, S.S. Yee, New analytical technique for characterization of thin films using surface plasmon resonance. Mater. Chem. Phys. 42, 242–246 (1995)

    CrossRef  Google Scholar 

  22. T. Akimoto, S. Sasaki, K. Ikebukuro, I. Karube, Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy. Appl. Opt. 38, 4058–4064 (1999)

    CrossRef  Google Scholar 

  23. Y.-D. Su, S.-J. Chen, T.-L. Yeh, Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt. Lett. 30, 1488–1490 (2005)

    CrossRef  Google Scholar 

  24. L. Wang, R.J.H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, J.K. Yang, Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016)

    CrossRef  Google Scholar 

  25. S.A. Maier, Plasmonics: The promise of highly integrated optical devices. IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006)

    CrossRef  Google Scholar 

  26. S.P. Burgos, H.W. Lee, E. Feigenbaum, R.M. Briggs, H.A. Atwater, Synthesis and characterization of plasmonic resonant guided wave networks. Nano Lett. 14, 3284–3292 (2014)

    CrossRef  Google Scholar 

  27. J. Zenneck, Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 328, 846–866 (1907)

    CrossRef  MATH  Google Scholar 

  28. A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Phys. 333, 665–736 (1909)

    CrossRef  MATH  Google Scholar 

  29. R. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)

    CrossRef  MathSciNet  Google Scholar 

  30. E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135–2136 (1968)

    Google Scholar 

  31. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398–410 (1968)

    CrossRef  Google Scholar 

  32. M. Piliarik, J. Homola, Z. Manıková, J. Čtyroký, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B Chem. 90, 236–242 (2003)

    CrossRef  Google Scholar 

  33. D. Monzón-Hernández, J. Villatoro, High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sens. Actuators B Chem. 115, 227–231 (2006)

    CrossRef  Google Scholar 

  34. D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt. 43, 1216–1220 (2004)

    CrossRef  Google Scholar 

  35. B. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators B Chem. 107, 40–46 (2005)

    CrossRef  Google Scholar 

  36. M. Skorobogatiy, A.V. Kabashin, Photon crystal waveguide-based surface plasmon resonance biosensor. Appl. Phys. Lett. 89, 143518 (2006)

    CrossRef  Google Scholar 

  37. B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express 15, 11413–11426 (2007)

    CrossRef  Google Scholar 

  38. A. Hassani, B. Gauvreau, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR. Electromagnetics 28, 198–213 (2008)

    CrossRef  Google Scholar 

  39. Q. Wei, L. Shu-Guang, X. Jian-Rong, X. Xü-Jun, Z. Lei, Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B 22, 074213 (2013)

    CrossRef  Google Scholar 

  40. B. Shuai, L. Xia, Y. Zhang, D. Liu, A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 20, 5974–5986 (2012)

    CrossRef  Google Scholar 

  41. B. Shuai, L. Xia, D. Liu, Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express 20, 25858–25866 (2012)

    CrossRef  Google Scholar 

  42. A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)

    CrossRef  Google Scholar 

  43. J.N. Dash, R. Jha, SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014)

    CrossRef  Google Scholar 

  44. J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26, 1092–1095 (2014)

    CrossRef  Google Scholar 

  45. A. Rifat, G.A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D.M. Chow et al., Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon. Technol. Lett. 27, 1628–1631 (2015)

    CrossRef  Google Scholar 

  46. L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, C. Xia, A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photonics J. 7, 1–9 (2015)

    CrossRef  Google Scholar 

  47. F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, C. Xia, An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10, 1263–1268 (2015)

    CrossRef  Google Scholar 

  48. A.K. Mishra, S.K. Mishra, B.D. Gupta, SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 344, 86–91 (2015)

    CrossRef  Google Scholar 

  49. Q. Liu, S. Li, H. Chen, J. Li, Z. Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8, 046701 (2015)

    CrossRef  Google Scholar 

  50. R. Otupiri, E.K. Akowuah, S. Haxha, Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23, 15716–15727 (2015)

    CrossRef  Google Scholar 

  51. Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)

    CrossRef  Google Scholar 

  52. X. Yang, Y. Lu, M. Wang, J. Yao, A photonic crystal fiber glucose sensor filled with silver nanowires. Opt. Commun. 359, 279–284 (2016)

    CrossRef  Google Scholar 

  53. J.N. Dash, R. Jha, Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt. Quantum Electron. 48, 137 (2016)

    CrossRef  Google Scholar 

  54. M.F.O. Hameed, M.Y. Azab, A. Heikal, S.M. El-Hefnawy, S. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28, 59–62 (2016)

    CrossRef  Google Scholar 

  55. C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu et al., A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 359, 378–382 (2016)

    CrossRef  Google Scholar 

  56. S. Singh, S.K. Mishra, B.D. Gupta, Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators A 193, 136–140 (2013)

    CrossRef  Google Scholar 

  57. M.R. Hasan, M.I. Hasan, M.S. Anower, Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands. Appl. Opt. 54, 9456–9461 (2015)

    CrossRef  Google Scholar 

  58. M.R. Hasan, M.S. Anower, M.I. Hasan, A Polarization Maintaining Single-Mode Photonic Crystal Fiber for Residual Dispersion Compensation. IEEE Photonics Technol. Lett. 28, 1782–1785 (2016)

    CrossRef  Google Scholar 

  59. M.R. Hasan, M.S. Anower, M.I. Hasan, Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths. Opt. Eng. 55, 056107–056107 (2016)

    CrossRef  Google Scholar 

  60. R. Ahmmed, R. Ahmed, S.A. Razzak, Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers, in 2013 International Conference on Informatics, Electronics & Vision (ICIEV) (2013), pp. 1–6

    Google Scholar 

  61. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)

    CrossRef  Google Scholar 

  62. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    CrossRef  Google Scholar 

  63. J. Homola, Electromagnetic theory of surface plasmons, in Surface plasmon resonance based sensors (2006), pp. 3–44

    Google Scholar 

  64. A.K. Sharma, R. Jha, B. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7, 1118–1129 (2007)

    CrossRef  Google Scholar 

  65. K.M. McPeak, S.V. Jayanti, S.J. Kress, S. Meyer, S. Iotti, A. Rossinelli et al., Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015)

    CrossRef  Google Scholar 

  66. T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner et al., Ultrathin niobium nanofilms on fiber optical tapers–a new route towards low-loss hybrid plasmonic modes. Sci. Rep. 5 (2015)

    Google Scholar 

  67. P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    CrossRef  Google Scholar 

  68. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)

    CrossRef  Google Scholar 

  69. S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirshov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2, 62–70 (2002)

    CrossRef  Google Scholar 

  70. N.D. Orf, O. Shapira, F. Sorin, S. Danto, M.A. Baldo, J.D. Joannopoulos et al., Fiber draw synthesis. Proc. Natl. Acad. Sci. 108, 4743–4747 (2011)

    CrossRef  Google Scholar 

  71. M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)

    CrossRef  Google Scholar 

  72. P.G. Etchegoin, E. Le Ru, M. Meyer, Erratum: an analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006); J. Chem. Phys. 127, 189901 (2007)

    Google Scholar 

  73. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)

    CrossRef  Google Scholar 

  74. V. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D. Aznakayeva, B. Thackray et al., Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)

    Google Scholar 

  75. M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7, 5763–5768 (2013)

    CrossRef  Google Scholar 

  76. M.M. Huq, C.-T. Hsieh, Z.-W. Lin, C.-Y. Yuan, One-step electrophoretic fabrication of a graphene and carbon nanotube-based scaffold for manganese-based pseudocapacitors. RSC Adv. 6, 87961–87968 (2016)

    CrossRef  Google Scholar 

  77. I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, I. Rubinstein, Ultrathin gold island films on silanized glass. Morphology and optical properties. Chem. Mater. 16, 3476–3483 (2004)

    CrossRef  Google Scholar 

  78. S. Szunerits, V.G. Praig, M. Manesse, R. Boukherroub, Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19, 195712 (2008)

    CrossRef  Google Scholar 

  79. C. Granata, A. Vettoliere, M. Russo, B. Ruggiero, Noise theory of dc nano-SQUIDs based on Dayem nanobridges. Phys. Rev. B 84, 224516 (2011)

    CrossRef  Google Scholar 

  80. A. Troeman, S. van der Ploeg, E. Il’Ichev, H.-G. Meyer, A. A. Golubov, M. Y. Kupriyanov et al., Temperature dependence measurements of the supercurrent-phase relationship in niobium nanobridges. Phys. Rev. B 77, 024509 (2008)

    Google Scholar 

  81. M. Schmelz, Y. Matsui, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders et al., Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Supercond. Sci. Technol. 28, 015004 (2014)

    CrossRef  Google Scholar 

  82. K. Sokhey, S. Rai, G. Lodha, Oxidation studies of niobium thin films at room temperature by X-ray reflectivity. Appl. Surf. Sci. 257, 222–226 (2010)

    CrossRef  Google Scholar 

  83. S. Franzen, Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C 112, 6027–6032 (2008)

    CrossRef  Google Scholar 

  84. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria et al., Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103, 093108 (2008)

    CrossRef  Google Scholar 

  85. R.K. Verma, B.D. Gupta, Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. JOSA A 27, 846–851 (2010)

    CrossRef  Google Scholar 

  86. A. Tubb, F. Payne, R. Millington, C. Lowe, Single-mode optical fibre surface plasma wave chemical sensor. Sens. Actuators B Chem. 41, 71–79 (1997)

    CrossRef  Google Scholar 

  87. W. Peng, S. Banerji, Y.-C. Kim, K.S. Booksh, Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)

    CrossRef  Google Scholar 

  88. Y. Zhang, C. Zhou, L. Xia, X. Yu, D. Liu, Wagon wheel fiber based multichannel plasmonic sensor. Opt. Express 19, 22863–22873 (2011)

    CrossRef  Google Scholar 

  89. R. Verma, B. Gupta, Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement. J. Phys. D Appl. Phys. 41, 095106 (2008)

    CrossRef  Google Scholar 

  90. S.-F. Wang, M.-H. Chiu, R.-S. Chang, Numerical simulation of a D-type optical fiber sensor based on the Kretchmann’s configuration and heterodyne interferometry. Sens. Actuators B Chem. 114, 120–126 (2006)

    CrossRef  Google Scholar 

  91. Y.-C. Kim, W. Peng, S. Banerji, K.S. Booksh, Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)

    CrossRef  Google Scholar 

  92. M.-C. Navarrete, N. Díaz-Herrera, A. González-Cano, Ó. Esteban, Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sens. Actuators B Chem. 190, 881–885 (2014)

    CrossRef  Google Scholar 

  93. B. Špačková, J. Homola, Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating. Opt. Express 17, 23254–23264 (2009)

    CrossRef  Google Scholar 

  94. J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu et al., Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuators B Chem. 230, 206–211 (2016)

    CrossRef  Google Scholar 

  95. T.T. Nguyen, K.T.L. Trinh, W.J. Yoon, N.Y. Lee, H. Ju, Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens. Actuators B Chem. 242, 1–8 (2017)

    CrossRef  Google Scholar 

  96. K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23, 17179–17184 (2015)

    CrossRef  Google Scholar 

  97. Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang et al., Electrochemical surface plasmon resonance fiber-optic sensor: in situ detection of electroactive biofilms. Anal. Chem. 88, 7609–7616 (2016)

    CrossRef  Google Scholar 

  98. M.R. Hasan, S. Akter, T. Khatun, A.A. Rifat, M.S. Anower, Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56, 043108–043108 (2017)

    CrossRef  Google Scholar 

  99. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    CrossRef  Google Scholar 

  100. M.R. Hasan, M.S. Anower, M.I. Hasan, S. Razzak, Polarization maintaining low-loss slotted core kagome lattice THz fiber. IEEE Photonics Technol. Lett. 28, 1751–1754 (2016)

    CrossRef  Google Scholar 

  101. M.R. Hasan, M.A. Islam, A.A. Rifat, M.I. Hasan, A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64, 218–225 (2017)

    CrossRef  Google Scholar 

  102. R. Slavı́k, J. Homola, J. Čtyroký, Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B Chem. 54, 74–79 (1999)

    CrossRef  Google Scholar 

  103. D. Gao, C. Guan, Y. Wen, X. Zhong, L. Yuan, Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)

    CrossRef  Google Scholar 

  104. W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 58, 1–8 (2014)

    CrossRef  Google Scholar 

  105. Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li et al., High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)

    CrossRef  Google Scholar 

  106. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan et al., A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005 (2009)

    CrossRef  Google Scholar 

  107. P. Bing, J. Yao, Y. Lu, Z. Li, A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels. Opt. Appl 42, 493–501 (2012)

    Google Scholar 

  108. W.L. Ng, A.A. Rifat, W.R. Wong, G. Mahdiraji, F.M. Adikan, A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics, 1–6 (2017)

    Google Scholar 

  109. A.A. Rifat, G. Mahdiraji, Y.M. Sua, R. Ahmed, Y. Shee, F.M. Adikan, Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24, 2485–2495 (2016)

    CrossRef  Google Scholar 

  110. X. Yang, Y. Lu, B. Liu, J. Yao, Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017)

    CrossRef  Google Scholar 

  111. D. Li, W. Zhang, H. Liu, J. Hu, G. Zhou, High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photonics J. 9, 1–8 (2017)

    Google Scholar 

  112. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv et al., Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25, 14227–14237 (2017)

    CrossRef  Google Scholar 

  113. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang et al., Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 12, 465–471 (2017)

    CrossRef  Google Scholar 

  114. X. Fu, Y. Lu, X. Huang, J. Yao, Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires. Opt. Appl 41, 941–951 (2011)

    Google Scholar 

  115. Y. Lu, M. Wang, C. Hao, Z. Zhao, J. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014)

    Google Scholar 

  116. Y. Lu, X. Yang, M. Wang, J. Yao, Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron. Lett. 51, 1675–1677 (2015)

    CrossRef  Google Scholar 

  117. N. Luan, J. Yao, A hollow-core photonic crystal fiber-based SPR sensor with large detection range. IEEE Photonics J. (2017)

    Google Scholar 

  118. S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A. Heikal, S.S. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48, 142 (2016)

    CrossRef  Google Scholar 

  119. A. Hassani, M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B 26, 1550 (2009)

    CrossRef  Google Scholar 

  120. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012)

    CrossRef  Google Scholar 

  121. R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6, 1–11 (2014)

    CrossRef  Google Scholar 

  122. M.F.O. Hameed, Y.K. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10, 046016–046016 (2016)

    CrossRef  Google Scholar 

  123. A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.M. Adikan, Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017)

    CrossRef  Google Scholar 

  124. M. Tian, P. Lu, L. Chen, C. Lv, D. Liu, All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. 285, 1550–1554 (2012)

    CrossRef  Google Scholar 

  125. Z. Tan, X. Li, Y. Chen, P. Fan, Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber. Plasmonics 9, 167–173 (2014)

    CrossRef  Google Scholar 

  126. J.N. Dash, R. Jha, On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10, 1123–1131 (2015)

    CrossRef  Google Scholar 

  127. D.F. Santos, A. Guerreiro, J.M. Baptista, SPR microstructured D-type optical fiber sensor configuration for refractive index measurement. IEEE Sens. J. 15, 5472–5477 (2015)

    CrossRef  Google Scholar 

  128. N. Luan, R. Wang, W. Lv, J. Yao, Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015)

    CrossRef  Google Scholar 

  129. Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An et al., Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance. Plasmonics 10, 675–680 (2015)

    CrossRef  Google Scholar 

  130. Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, P. Fan, Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt. Express 22, 15049–15063 (2014)

    CrossRef  Google Scholar 

  131. Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, Y. Geng, Experimental realization of D-shaped photonic crystal fiber SPR sensor. J. Phys. D Appl. Phys. 50, 025101 (2016)

    CrossRef  Google Scholar 

  132. G. An, S. Li, H. Wang, X. Zhang, Metal Oxide-Graphene-Based Quasi-D-Shaped Optical Fiber Plasmonic Biosensor. IEEE Photonics J. 9, 1–9 (2017)

    CrossRef  Google Scholar 

  133. R.K. Gangwar, V.K. Singh, Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics, 1–6 (2016)

    CrossRef  Google Scholar 

  134. T. Huang, Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12, 583–588 (2017)

    CrossRef  Google Scholar 

  135. X. Yang, Y. Lu, M. Wang, J. Yao, An exposed-core grapefruit fibers based surface plasmon resonance sensor. Sensors 15, 17106–17114 (2015)

    CrossRef  Google Scholar 

  136. A.A. Rifat, G.A. Mahdiraji, R. Ahmed, D.M. Chow, Y. Sua, Y. Shee et al., Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8, 1–8 (2016)

    CrossRef  Google Scholar 

  137. V. Popescu, N. Puscas, G. Perrone, Power absorption efficiency of a new microstructured plasmon optical fiber. JOSA B 29, 3039–3046 (2012)

    CrossRef  Google Scholar 

  138. V. Popescu, N. Puscas, G. Perrone, Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. JOSA B 31, 1062–1070 (2014)

    CrossRef  Google Scholar 

  139. A. Rifat, G.A. Mahdiraji, Y. Shee, M.J. Shawon, F.M. Adikan, A novel photonic crystal fiber biosensor using surface plasmon resonance. Proced. Eng. 140, 1–7 (2016)

    CrossRef  Google Scholar 

  140. A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12503, 1 (2018)

    Google Scholar 

  141. C. Liu, L. Yang, W. Su, F. Wang, T. Sun, Q. Liu et al., Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017)

    CrossRef  Google Scholar 

  142. I.M. White, X. Fan, On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)

    CrossRef  Google Scholar 

  143. R. Klenk, T. Walter, H.W. Schock, D. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. 5, 114–119 (1993)

    CrossRef  Google Scholar 

  144. M.C. Barnes, D.-Y. Kim, H.S. Ahn, C.O. Lee, N.M. Hwang, Deposition mechanism of gold by thermal evaporation: approach by charged cluster model. J. Cryst. Growth 213, 83–92 (2000)

    CrossRef  Google Scholar 

  145. L. Armelao, D. Barreca, G. Bottaro, G. Bruno, A. Gasparotto, M. Losurdo et al., RF-sputtering of gold on silica surfaces: evolution from clusters to continuous films. Mater. Sci. Eng., C 25, 599–603 (2005)

    CrossRef  Google Scholar 

  146. P.J. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril et al., Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)

    CrossRef  Google Scholar 

  147. M.B. Griffiths, P.J. Pallister, D.J. Mandia, S.N.T. Barry, Atomic layer deposition of gold metal. Chem. Mater. 28, 44–46 (2015)

    CrossRef  Google Scholar 

  148. J.A. Sioss, C.D. Keating, Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett. 5, 1779–1783 (2005)

    CrossRef  Google Scholar 

  149. Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu et al., Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection. IEEE Photonics Technol. Lett. 26, 777–780 (2014)

    CrossRef  Google Scholar 

  150. M.K.K. Oo, Y. Han, R. Martini, S. Sukhishvili, H. Du, Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt. Lett. 34, 968–970 (2009)

    CrossRef  Google Scholar 

  151. M.R. Hasan, M.A. Islam, M. Anower, S. Razzak, Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl. Opt. 55, 8441–8447 (2016)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmmed A. Rifat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rifat, A.A., Rabiul Hasan, M., Ahmed, R., Miroshnichenko, A.E. (2019). Microstructured Optical Fiber-Based Plasmonic Sensors. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)