Abstract
Surface plasmon resonance (SPR) is a considerably growing optical sensing approach which has been employed in wide range of applications including medical diagnostics, biological and chemical analyte detection, environmental monitoring, and food safety to security. SPR sensing technique shows high sensitive nature due to small change of sample refractive index, compared to other optical sensing techniques. Recently, microstructured optical fiber -based plasmonic sensors have shown great development due to its compact structure and light controlling capabilities in unprecedented ways. The goal of this chapter is to (1) describe the principle operation of plasmonic sensors, (2) discuss the optical properties of plasmonic materials, (3) compare and contrast the different types of microstructured optical fiber -based plasmonic sensors, and (4) highlight the main challenges of microstructured plasmonic sensors and possible solutions.
Keywords
- Surface plasmon resonance
- Microstructured optical fiber
- Optical fiber sensors
- Optical sensing and sensors
This is a preview of subscription content, access via your institution.
Buying options


Reprinted with permission from Macmillan Publishers Ltd. [66]. c(i) Microdevice installed with the SPR fiber sensor head and (ii) the experimental setup for the detection of polymerase chain reaction amplification with SPR fiber sensor system. Reprinted with permission from Elsevier B.V. [95]. d Smartphone-based fiber optic SPR sensor for pregnancy test. Reprinted with permission from Optical Society of America [96]. e(i) Schematic of the plasmonic fiber optic sensing system for in situ biofilm monitoring, (ii) SEM image of the gold-coated optic fiber sensor, and (iii) the zoomed configuration of the gold-coated sensor probe. Reprinted with permission from the American Chemical Society [97]

Reprinted with permission from Springer [108]

Reprinted with permission from MDPI AG [42]. b(i) Cross-sectional view of the open ring PCF sensor, (ii) optical field distribution of the plasmonic mode, (iii) optical field distribution of the fundamental core-guided mode, and (iv) loss spectra for the variation of gold layer thickness. Reprinted with permission from Optical Society of America [112]. c(i) Cross-sectional view of the gold nanowire-based PCF sensor, (ii) optical field distribution of the plasmonic mode, (iii) optical field distribution of the fundamental core-guided mode, and (iv) loss spectra for the variation of analyte refractive index [113]

Reprinted with permission from Optical Society of America [119]. b(i) Cross-sectional view of the bimetallic-slotted PCF sensor, (ii) loss spectra for the variation of silver layer thickness in quasi-TM mode, and (iii) loss spectra for the variation of silver layer thickness in quasi-TE mode. Reprinted with permission from SPIE [122]. c(i) Cross-sectional view of the PCF sensor with elliptical air holes, and (ii) loss spectra for the variation of analyte refractive index. Reprinted with permission from Optical Society of America [50]. d(i) Cross-sectional view of the PCF sensor with four microfluidic channels, and (ii) optical field distribution of the fundamental mode. Reprinted with permission from Springer [118]

Reprinted with permission from IEEE [123]

Reprinted with permission from Optical Society of America [128]. c Cross-sectional view of the D-shaped PCF with rectangular lattice air holes [46]. d(i) Cross-sectional view of the quasi-D-shaped PCF sensor and (ii) amplitude sensitivity for the variation of analyte refractive index from 1.33 to 1.37. Reprinted with permission from IEEE [132]. e Cross-sectional view of the hollow-core D-shaped PCF sensor with hexagonal lattice. Reprinted with permission from Springer [133]

Reprinted with permission from Optical Society of America [109]

Reprinted with permission from SPIE [140]. b(i) Cross-sectional view of the annular core PCF sensor and (ii) dependence of optical loss on the analyte channel width for different wavelengths [141]. c(i) Cross-sectional view of the copper–graphene-based PCF sensor and (ii) linear fitting of the resonance wavelengths. Reprinted with permission from IEEE [136]. d Cross-sectional view of the hexagonal lattice PCF sensor with external sensing. Reprinted with permission from IEEE [45]
References
C.E. Berger, J. Greve, Differential SPR immunosensing. Sens. Actuators B Chem. 63, 103–108 (2000)
I. Stemmler, A. Brecht, G. Gauglitz, Compact surface plasmon resonance-transducers with spectral readout for biosensing applications. Sens. Actuators B Chem. 54, 98–105 (1999)
Y. Fang, Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4, 583–595 (2006)
J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)
R. Jorgenson, S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 12, 213–220 (1993)
B.D. Gupta, R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. 2009 (2009)
B. Lee, S. Roh, J. Park, Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15, 209–221 (2009)
C. Mouvet, R. Harris, C. Maciag, B. Luff, J. Wilkinson, J. Piehler et al., Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 338, 109–117 (1997)
C.P. Cahill, K.S. Johnston, S.S. Yee, A surface plasmon resonance sensor probe based on retro-reflection. Sens. Actuators B Chem. 45, 161–166 (1997)
Y.-C. Cheng, W.-K. Su, J.-H. Liou, Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39, 311–314 (2000)
J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, S.S. Yee, Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol. 75, 61–69 (2002)
V. Koubová, E. Brynda, L. Karasová, J. Škvor, J. Homola, J. Dostálek et al., Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B Chem. 74, 100–105 (2001)
A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse et al., On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 149, 194–198 (2010)
B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)
G. Ashwell, M. Roberts, Highly selective surface plasmon resonance sensor for NO2. Electron. Lett. 32, 2089–2091 (1996)
M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, K. Cammann, Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical 34, 328–333 (1996)
P.J. Kajenski, Tunable optical filter using long-range surface plasmons. Opt. Eng. 36, 1537–1541 (1997)
Y. Wang, Voltage-induced color-selective absorption with surface plasmons. Appl. Phys. Lett. 67, 2759–2761 (1995)
J.S. Schildkraut, Long-range surface plasmon electrooptic modulator. Appl. Opt. 27, 4587–4590 (1988)
G.T. Sincerbox, J.C. Gordon, Small fast large-aperture light modulator using attenuated total reflection. Appl. Opt. 20, 1491–1496 (1981)
K.S. Johnston, S.R. Karlsen, C.C. Jung, S.S. Yee, New analytical technique for characterization of thin films using surface plasmon resonance. Mater. Chem. Phys. 42, 242–246 (1995)
T. Akimoto, S. Sasaki, K. Ikebukuro, I. Karube, Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy. Appl. Opt. 38, 4058–4064 (1999)
Y.-D. Su, S.-J. Chen, T.-L. Yeh, Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt. Lett. 30, 1488–1490 (2005)
L. Wang, R.J.H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, J.K. Yang, Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016)
S.A. Maier, Plasmonics: The promise of highly integrated optical devices. IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006)
S.P. Burgos, H.W. Lee, E. Feigenbaum, R.M. Briggs, H.A. Atwater, Synthesis and characterization of plasmonic resonant guided wave networks. Nano Lett. 14, 3284–3292 (2014)
J. Zenneck, Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 328, 846–866 (1907)
A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Phys. 333, 665–736 (1909)
R. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)
E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135–2136 (1968)
A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398–410 (1968)
M. Piliarik, J. Homola, Z. Manıková, J. Čtyroký, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B Chem. 90, 236–242 (2003)
D. Monzón-Hernández, J. Villatoro, High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sens. Actuators B Chem. 115, 227–231 (2006)
D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt. 43, 1216–1220 (2004)
B. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators B Chem. 107, 40–46 (2005)
M. Skorobogatiy, A.V. Kabashin, Photon crystal waveguide-based surface plasmon resonance biosensor. Appl. Phys. Lett. 89, 143518 (2006)
B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express 15, 11413–11426 (2007)
A. Hassani, B. Gauvreau, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR. Electromagnetics 28, 198–213 (2008)
Q. Wei, L. Shu-Guang, X. Jian-Rong, X. Xü-Jun, Z. Lei, Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B 22, 074213 (2013)
B. Shuai, L. Xia, Y. Zhang, D. Liu, A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 20, 5974–5986 (2012)
B. Shuai, L. Xia, D. Liu, Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express 20, 25858–25866 (2012)
A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)
J.N. Dash, R. Jha, SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014)
J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26, 1092–1095 (2014)
A. Rifat, G.A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D.M. Chow et al., Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon. Technol. Lett. 27, 1628–1631 (2015)
L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, C. Xia, A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photonics J. 7, 1–9 (2015)
F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, C. Xia, An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10, 1263–1268 (2015)
A.K. Mishra, S.K. Mishra, B.D. Gupta, SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 344, 86–91 (2015)
Q. Liu, S. Li, H. Chen, J. Li, Z. Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8, 046701 (2015)
R. Otupiri, E.K. Akowuah, S. Haxha, Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23, 15716–15727 (2015)
Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)
X. Yang, Y. Lu, M. Wang, J. Yao, A photonic crystal fiber glucose sensor filled with silver nanowires. Opt. Commun. 359, 279–284 (2016)
J.N. Dash, R. Jha, Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt. Quantum Electron. 48, 137 (2016)
M.F.O. Hameed, M.Y. Azab, A. Heikal, S.M. El-Hefnawy, S. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28, 59–62 (2016)
C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu et al., A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 359, 378–382 (2016)
S. Singh, S.K. Mishra, B.D. Gupta, Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators A 193, 136–140 (2013)
M.R. Hasan, M.I. Hasan, M.S. Anower, Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands. Appl. Opt. 54, 9456–9461 (2015)
M.R. Hasan, M.S. Anower, M.I. Hasan, A Polarization Maintaining Single-Mode Photonic Crystal Fiber for Residual Dispersion Compensation. IEEE Photonics Technol. Lett. 28, 1782–1785 (2016)
M.R. Hasan, M.S. Anower, M.I. Hasan, Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths. Opt. Eng. 55, 056107–056107 (2016)
R. Ahmmed, R. Ahmed, S.A. Razzak, Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers, in 2013 International Conference on Informatics, Electronics & Vision (ICIEV) (2013), pp. 1–6
A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)
J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)
J. Homola, Electromagnetic theory of surface plasmons, in Surface plasmon resonance based sensors (2006), pp. 3–44
A.K. Sharma, R. Jha, B. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7, 1118–1129 (2007)
K.M. McPeak, S.V. Jayanti, S.J. Kress, S. Meyer, S. Iotti, A. Rossinelli et al., Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015)
T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner et al., Ultrathin niobium nanofilms on fiber optical tapers–a new route towards low-loss hybrid plasmonic modes. Sci. Rep. 5 (2015)
P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)
G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)
S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirshov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2, 62–70 (2002)
N.D. Orf, O. Shapira, F. Sorin, S. Danto, M.A. Baldo, J.D. Joannopoulos et al., Fiber draw synthesis. Proc. Natl. Acad. Sci. 108, 4743–4747 (2011)
M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)
P.G. Etchegoin, E. Le Ru, M. Meyer, Erratum: an analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006); J. Chem. Phys. 127, 189901 (2007)
P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)
V. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D. Aznakayeva, B. Thackray et al., Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)
M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7, 5763–5768 (2013)
M.M. Huq, C.-T. Hsieh, Z.-W. Lin, C.-Y. Yuan, One-step electrophoretic fabrication of a graphene and carbon nanotube-based scaffold for manganese-based pseudocapacitors. RSC Adv. 6, 87961–87968 (2016)
I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, I. Rubinstein, Ultrathin gold island films on silanized glass. Morphology and optical properties. Chem. Mater. 16, 3476–3483 (2004)
S. Szunerits, V.G. Praig, M. Manesse, R. Boukherroub, Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19, 195712 (2008)
C. Granata, A. Vettoliere, M. Russo, B. Ruggiero, Noise theory of dc nano-SQUIDs based on Dayem nanobridges. Phys. Rev. B 84, 224516 (2011)
A. Troeman, S. van der Ploeg, E. Il’Ichev, H.-G. Meyer, A. A. Golubov, M. Y. Kupriyanov et al., Temperature dependence measurements of the supercurrent-phase relationship in niobium nanobridges. Phys. Rev. B 77, 024509 (2008)
M. Schmelz, Y. Matsui, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders et al., Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Supercond. Sci. Technol. 28, 015004 (2014)
K. Sokhey, S. Rai, G. Lodha, Oxidation studies of niobium thin films at room temperature by X-ray reflectivity. Appl. Surf. Sci. 257, 222–226 (2010)
S. Franzen, Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C 112, 6027–6032 (2008)
C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria et al., Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103, 093108 (2008)
R.K. Verma, B.D. Gupta, Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. JOSA A 27, 846–851 (2010)
A. Tubb, F. Payne, R. Millington, C. Lowe, Single-mode optical fibre surface plasma wave chemical sensor. Sens. Actuators B Chem. 41, 71–79 (1997)
W. Peng, S. Banerji, Y.-C. Kim, K.S. Booksh, Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)
Y. Zhang, C. Zhou, L. Xia, X. Yu, D. Liu, Wagon wheel fiber based multichannel plasmonic sensor. Opt. Express 19, 22863–22873 (2011)
R. Verma, B. Gupta, Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement. J. Phys. D Appl. Phys. 41, 095106 (2008)
S.-F. Wang, M.-H. Chiu, R.-S. Chang, Numerical simulation of a D-type optical fiber sensor based on the Kretchmann’s configuration and heterodyne interferometry. Sens. Actuators B Chem. 114, 120–126 (2006)
Y.-C. Kim, W. Peng, S. Banerji, K.S. Booksh, Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)
M.-C. Navarrete, N. Díaz-Herrera, A. González-Cano, Ó. Esteban, Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sens. Actuators B Chem. 190, 881–885 (2014)
B. Špačková, J. Homola, Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating. Opt. Express 17, 23254–23264 (2009)
J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu et al., Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuators B Chem. 230, 206–211 (2016)
T.T. Nguyen, K.T.L. Trinh, W.J. Yoon, N.Y. Lee, H. Ju, Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens. Actuators B Chem. 242, 1–8 (2017)
K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23, 17179–17184 (2015)
Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang et al., Electrochemical surface plasmon resonance fiber-optic sensor: in situ detection of electroactive biofilms. Anal. Chem. 88, 7609–7616 (2016)
M.R. Hasan, S. Akter, T. Khatun, A.A. Rifat, M.S. Anower, Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56, 043108–043108 (2017)
T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)
M.R. Hasan, M.S. Anower, M.I. Hasan, S. Razzak, Polarization maintaining low-loss slotted core kagome lattice THz fiber. IEEE Photonics Technol. Lett. 28, 1751–1754 (2016)
M.R. Hasan, M.A. Islam, A.A. Rifat, M.I. Hasan, A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64, 218–225 (2017)
R. Slavı́k, J. Homola, J. Čtyroký, Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B Chem. 54, 74–79 (1999)
D. Gao, C. Guan, Y. Wen, X. Zhong, L. Yuan, Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)
W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 58, 1–8 (2014)
Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li et al., High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)
X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan et al., A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005 (2009)
P. Bing, J. Yao, Y. Lu, Z. Li, A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels. Opt. Appl 42, 493–501 (2012)
W.L. Ng, A.A. Rifat, W.R. Wong, G. Mahdiraji, F.M. Adikan, A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics, 1–6 (2017)
A.A. Rifat, G. Mahdiraji, Y.M. Sua, R. Ahmed, Y. Shee, F.M. Adikan, Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24, 2485–2495 (2016)
X. Yang, Y. Lu, B. Liu, J. Yao, Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017)
D. Li, W. Zhang, H. Liu, J. Hu, G. Zhou, High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photonics J. 9, 1–8 (2017)
C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv et al., Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25, 14227–14237 (2017)
G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang et al., Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 12, 465–471 (2017)
X. Fu, Y. Lu, X. Huang, J. Yao, Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires. Opt. Appl 41, 941–951 (2011)
Y. Lu, M. Wang, C. Hao, Z. Zhao, J. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014)
Y. Lu, X. Yang, M. Wang, J. Yao, Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron. Lett. 51, 1675–1677 (2015)
N. Luan, J. Yao, A hollow-core photonic crystal fiber-based SPR sensor with large detection range. IEEE Photonics J. (2017)
S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A. Heikal, S.S. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48, 142 (2016)
A. Hassani, M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B 26, 1550 (2009)
E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012)
R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6, 1–11 (2014)
M.F.O. Hameed, Y.K. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10, 046016–046016 (2016)
A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.M. Adikan, Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017)
M. Tian, P. Lu, L. Chen, C. Lv, D. Liu, All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. 285, 1550–1554 (2012)
Z. Tan, X. Li, Y. Chen, P. Fan, Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber. Plasmonics 9, 167–173 (2014)
J.N. Dash, R. Jha, On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10, 1123–1131 (2015)
D.F. Santos, A. Guerreiro, J.M. Baptista, SPR microstructured D-type optical fiber sensor configuration for refractive index measurement. IEEE Sens. J. 15, 5472–5477 (2015)
N. Luan, R. Wang, W. Lv, J. Yao, Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015)
Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An et al., Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance. Plasmonics 10, 675–680 (2015)
Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, P. Fan, Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt. Express 22, 15049–15063 (2014)
Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, Y. Geng, Experimental realization of D-shaped photonic crystal fiber SPR sensor. J. Phys. D Appl. Phys. 50, 025101 (2016)
G. An, S. Li, H. Wang, X. Zhang, Metal Oxide-Graphene-Based Quasi-D-Shaped Optical Fiber Plasmonic Biosensor. IEEE Photonics J. 9, 1–9 (2017)
R.K. Gangwar, V.K. Singh, Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics, 1–6 (2016)
T. Huang, Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12, 583–588 (2017)
X. Yang, Y. Lu, M. Wang, J. Yao, An exposed-core grapefruit fibers based surface plasmon resonance sensor. Sensors 15, 17106–17114 (2015)
A.A. Rifat, G.A. Mahdiraji, R. Ahmed, D.M. Chow, Y. Sua, Y. Shee et al., Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8, 1–8 (2016)
V. Popescu, N. Puscas, G. Perrone, Power absorption efficiency of a new microstructured plasmon optical fiber. JOSA B 29, 3039–3046 (2012)
V. Popescu, N. Puscas, G. Perrone, Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. JOSA B 31, 1062–1070 (2014)
A. Rifat, G.A. Mahdiraji, Y. Shee, M.J. Shawon, F.M. Adikan, A novel photonic crystal fiber biosensor using surface plasmon resonance. Proced. Eng. 140, 1–7 (2016)
A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12503, 1 (2018)
C. Liu, L. Yang, W. Su, F. Wang, T. Sun, Q. Liu et al., Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017)
I.M. White, X. Fan, On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)
R. Klenk, T. Walter, H.W. Schock, D. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. 5, 114–119 (1993)
M.C. Barnes, D.-Y. Kim, H.S. Ahn, C.O. Lee, N.M. Hwang, Deposition mechanism of gold by thermal evaporation: approach by charged cluster model. J. Cryst. Growth 213, 83–92 (2000)
L. Armelao, D. Barreca, G. Bottaro, G. Bruno, A. Gasparotto, M. Losurdo et al., RF-sputtering of gold on silica surfaces: evolution from clusters to continuous films. Mater. Sci. Eng., C 25, 599–603 (2005)
P.J. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril et al., Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)
M.B. Griffiths, P.J. Pallister, D.J. Mandia, S.N.T. Barry, Atomic layer deposition of gold metal. Chem. Mater. 28, 44–46 (2015)
J.A. Sioss, C.D. Keating, Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett. 5, 1779–1783 (2005)
Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu et al., Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection. IEEE Photonics Technol. Lett. 26, 777–780 (2014)
M.K.K. Oo, Y. Han, R. Martini, S. Sukhishvili, H. Du, Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt. Lett. 34, 968–970 (2009)
M.R. Hasan, M.A. Islam, M. Anower, S. Razzak, Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl. Opt. 55, 8441–8447 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Rifat, A.A., Rabiul Hasan, M., Ahmed, R., Miroshnichenko, A.E. (2019). Microstructured Optical Fiber-Based Plasmonic Sensors. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-76556-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76555-6
Online ISBN: 978-3-319-76556-3
eBook Packages: EngineeringEngineering (R0)