Advertisement

Microstructured Optical Fiber-Based Plasmonic Sensors

  • Ahmmed A. Rifat
  • Md. Rabiul Hasan
  • Rajib Ahmed
  • Andrey E. Miroshnichenko
Chapter

Abstract

Surface plasmon resonance (SPR) is a considerably growing optical sensing approach which has been employed in wide range of applications including medical diagnostics, biological and chemical analyte detection, environmental monitoring, and food safety to security. SPR sensing technique shows high sensitive nature due to small change of sample refractive index, compared to other optical sensing techniques. Recently, microstructured optical fiber-based plasmonic sensors have shown great development due to its compact structure and light controlling capabilities in unprecedented ways. The goal of this chapter is to (1) describe the principle operation of plasmonic sensors, (2) discuss the optical properties of plasmonic materials, (3) compare and contrast the different types of microstructured optical fiber-based plasmonic sensors, and (4) highlight the main challenges of microstructured plasmonic sensors and possible solutions.

Keywords

Surface plasmon resonance Microstructured optical fiber Optical fiber sensors Optical sensing and sensors 

References

  1. 1.
    C.E. Berger, J. Greve, Differential SPR immunosensing. Sens. Actuators B Chem. 63, 103–108 (2000)CrossRefGoogle Scholar
  2. 2.
    I. Stemmler, A. Brecht, G. Gauglitz, Compact surface plasmon resonance-transducers with spectral readout for biosensing applications. Sens. Actuators B Chem. 54, 98–105 (1999)CrossRefGoogle Scholar
  3. 3.
    Y. Fang, Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4, 583–595 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Jorgenson, S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 12, 213–220 (1993)CrossRefGoogle Scholar
  6. 6.
    B.D. Gupta, R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. 2009 (2009)Google Scholar
  7. 7.
    B. Lee, S. Roh, J. Park, Current status of micro-and nano-structured optical fiber sensors. Opt. Fiber Technol. 15, 209–221 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Mouvet, R. Harris, C. Maciag, B. Luff, J. Wilkinson, J. Piehler et al., Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 338, 109–117 (1997)CrossRefGoogle Scholar
  9. 9.
    C.P. Cahill, K.S. Johnston, S.S. Yee, A surface plasmon resonance sensor probe based on retro-reflection. Sens. Actuators B Chem. 45, 161–166 (1997)CrossRefGoogle Scholar
  10. 10.
    Y.-C. Cheng, W.-K. Su, J.-H. Liou, Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39, 311–314 (2000)CrossRefGoogle Scholar
  11. 11.
    J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, S.S. Yee, Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol. 75, 61–69 (2002)CrossRefGoogle Scholar
  12. 12.
    V. Koubová, E. Brynda, L. Karasová, J. Škvor, J. Homola, J. Dostálek et al., Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuators B Chem. 74, 100–105 (2001)CrossRefGoogle Scholar
  13. 13.
    A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse et al., On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 149, 194–198 (2010)CrossRefGoogle Scholar
  14. 14.
    B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)CrossRefGoogle Scholar
  15. 15.
    G. Ashwell, M. Roberts, Highly selective surface plasmon resonance sensor for NO2. Electron. Lett. 32, 2089–2091 (1996)CrossRefGoogle Scholar
  16. 16.
    M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, K. Cammann, Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy. Sensors and Actuators B: Chemical 34, 328–333 (1996)CrossRefGoogle Scholar
  17. 17.
    P.J. Kajenski, Tunable optical filter using long-range surface plasmons. Opt. Eng. 36, 1537–1541 (1997)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Voltage-induced color-selective absorption with surface plasmons. Appl. Phys. Lett. 67, 2759–2761 (1995)CrossRefGoogle Scholar
  19. 19.
    J.S. Schildkraut, Long-range surface plasmon electrooptic modulator. Appl. Opt. 27, 4587–4590 (1988)CrossRefGoogle Scholar
  20. 20.
    G.T. Sincerbox, J.C. Gordon, Small fast large-aperture light modulator using attenuated total reflection. Appl. Opt. 20, 1491–1496 (1981)CrossRefGoogle Scholar
  21. 21.
    K.S. Johnston, S.R. Karlsen, C.C. Jung, S.S. Yee, New analytical technique for characterization of thin films using surface plasmon resonance. Mater. Chem. Phys. 42, 242–246 (1995)CrossRefGoogle Scholar
  22. 22.
    T. Akimoto, S. Sasaki, K. Ikebukuro, I. Karube, Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy. Appl. Opt. 38, 4058–4064 (1999)CrossRefGoogle Scholar
  23. 23.
    Y.-D. Su, S.-J. Chen, T.-L. Yeh, Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt. Lett. 30, 1488–1490 (2005)CrossRefGoogle Scholar
  24. 24.
    L. Wang, R.J.H. Ng, S. Safari Dinachali, M. Jalali, Y. Yu, J.K. Yang, Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016)CrossRefGoogle Scholar
  25. 25.
    S.A. Maier, Plasmonics: The promise of highly integrated optical devices. IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006)CrossRefGoogle Scholar
  26. 26.
    S.P. Burgos, H.W. Lee, E. Feigenbaum, R.M. Briggs, H.A. Atwater, Synthesis and characterization of plasmonic resonant guided wave networks. Nano Lett. 14, 3284–3292 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Zenneck, Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. 328, 846–866 (1907)MATHCrossRefGoogle Scholar
  28. 28.
    A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Phys. 333, 665–736 (1909)MATHCrossRefGoogle Scholar
  29. 29.
    R. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135–2136 (1968)Google Scholar
  31. 31.
    A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398–410 (1968)CrossRefGoogle Scholar
  32. 32.
    M. Piliarik, J. Homola, Z. Manıková, J. Čtyroký, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B Chem. 90, 236–242 (2003)CrossRefGoogle Scholar
  33. 33.
    D. Monzón-Hernández, J. Villatoro, High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sens. Actuators B Chem. 115, 227–231 (2006)CrossRefGoogle Scholar
  34. 34.
    D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks. Appl. Opt. 43, 1216–1220 (2004)CrossRefGoogle Scholar
  35. 35.
    B. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators B Chem. 107, 40–46 (2005)CrossRefGoogle Scholar
  36. 36.
    M. Skorobogatiy, A.V. Kabashin, Photon crystal waveguide-based surface plasmon resonance biosensor. Appl. Phys. Lett. 89, 143518 (2006)CrossRefGoogle Scholar
  37. 37.
    B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express 15, 11413–11426 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Hassani, B. Gauvreau, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR. Electromagnetics 28, 198–213 (2008)CrossRefGoogle Scholar
  39. 39.
    Q. Wei, L. Shu-Guang, X. Jian-Rong, X. Xü-Jun, Z. Lei, Numerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin. Phys. B 22, 074213 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Shuai, L. Xia, Y. Zhang, D. Liu, A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 20, 5974–5986 (2012)CrossRefGoogle Scholar
  41. 41.
    B. Shuai, L. Xia, D. Liu, Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express 20, 25858–25866 (2012)CrossRefGoogle Scholar
  42. 42.
    A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)CrossRefGoogle Scholar
  43. 43.
    J.N. Dash, R. Jha, SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014)CrossRefGoogle Scholar
  44. 44.
    J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26, 1092–1095 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Rifat, G.A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D.M. Chow et al., Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon. Technol. Lett. 27, 1628–1631 (2015)CrossRefGoogle Scholar
  46. 46.
    L. Peng, F. Shi, G. Zhou, S. Ge, Z. Hou, C. Xia, A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photonics J. 7, 1–9 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Shi, L. Peng, G. Zhou, X. Cang, Z. Hou, C. Xia, An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10, 1263–1268 (2015)CrossRefGoogle Scholar
  48. 48.
    A.K. Mishra, S.K. Mishra, B.D. Gupta, SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 344, 86–91 (2015)CrossRefGoogle Scholar
  49. 49.
    Q. Liu, S. Li, H. Chen, J. Li, Z. Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8, 046701 (2015)CrossRefGoogle Scholar
  50. 50.
    R. Otupiri, E.K. Akowuah, S. Haxha, Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23, 15716–15727 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)CrossRefGoogle Scholar
  52. 52.
    X. Yang, Y. Lu, M. Wang, J. Yao, A photonic crystal fiber glucose sensor filled with silver nanowires. Opt. Commun. 359, 279–284 (2016)CrossRefGoogle Scholar
  53. 53.
    J.N. Dash, R. Jha, Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt. Quantum Electron. 48, 137 (2016)CrossRefGoogle Scholar
  54. 54.
    M.F.O. Hameed, M.Y. Azab, A. Heikal, S.M. El-Hefnawy, S. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28, 59–62 (2016)CrossRefGoogle Scholar
  55. 55.
    C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu et al., A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 359, 378–382 (2016)CrossRefGoogle Scholar
  56. 56.
    S. Singh, S.K. Mishra, B.D. Gupta, Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides. Sens. Actuators A 193, 136–140 (2013)CrossRefGoogle Scholar
  57. 57.
    M.R. Hasan, M.I. Hasan, M.S. Anower, Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands. Appl. Opt. 54, 9456–9461 (2015)CrossRefGoogle Scholar
  58. 58.
    M.R. Hasan, M.S. Anower, M.I. Hasan, A Polarization Maintaining Single-Mode Photonic Crystal Fiber for Residual Dispersion Compensation. IEEE Photonics Technol. Lett. 28, 1782–1785 (2016)CrossRefGoogle Scholar
  59. 59.
    M.R. Hasan, M.S. Anower, M.I. Hasan, Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths. Opt. Eng. 55, 056107–056107 (2016)CrossRefGoogle Scholar
  60. 60.
    R. Ahmmed, R. Ahmed, S.A. Razzak, Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers, in 2013 International Conference on Informatics, Electronics & Vision (ICIEV) (2013), pp. 1–6Google Scholar
  61. 61.
    A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)CrossRefGoogle Scholar
  62. 62.
    J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)CrossRefGoogle Scholar
  63. 63.
    J. Homola, Electromagnetic theory of surface plasmons, in Surface plasmon resonance based sensors (2006), pp. 3–44Google Scholar
  64. 64.
    A.K. Sharma, R. Jha, B. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7, 1118–1129 (2007)CrossRefGoogle Scholar
  65. 65.
    K.M. McPeak, S.V. Jayanti, S.J. Kress, S. Meyer, S. Iotti, A. Rossinelli et al., Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015)CrossRefGoogle Scholar
  66. 66.
    T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner et al., Ultrathin niobium nanofilms on fiber optical tapers–a new route towards low-loss hybrid plasmonic modes. Sci. Rep. 5 (2015)Google Scholar
  67. 67.
    P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)CrossRefGoogle Scholar
  68. 68.
    G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)CrossRefGoogle Scholar
  69. 69.
    S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirshov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2, 62–70 (2002)CrossRefGoogle Scholar
  70. 70.
    N.D. Orf, O. Shapira, F. Sorin, S. Danto, M.A. Baldo, J.D. Joannopoulos et al., Fiber draw synthesis. Proc. Natl. Acad. Sci. 108, 4743–4747 (2011)CrossRefGoogle Scholar
  71. 71.
    M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)CrossRefGoogle Scholar
  72. 72.
    P.G. Etchegoin, E. Le Ru, M. Meyer, Erratum: an analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006); J. Chem. Phys. 127, 189901 (2007)Google Scholar
  73. 73.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)CrossRefGoogle Scholar
  74. 74.
    V. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D. Aznakayeva, B. Thackray et al., Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)Google Scholar
  75. 75.
    M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7, 5763–5768 (2013)CrossRefGoogle Scholar
  76. 76.
    M.M. Huq, C.-T. Hsieh, Z.-W. Lin, C.-Y. Yuan, One-step electrophoretic fabrication of a graphene and carbon nanotube-based scaffold for manganese-based pseudocapacitors. RSC Adv. 6, 87961–87968 (2016)CrossRefGoogle Scholar
  77. 77.
    I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, I. Rubinstein, Ultrathin gold island films on silanized glass. Morphology and optical properties. Chem. Mater. 16, 3476–3483 (2004)CrossRefGoogle Scholar
  78. 78.
    S. Szunerits, V.G. Praig, M. Manesse, R. Boukherroub, Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19, 195712 (2008)CrossRefGoogle Scholar
  79. 79.
    C. Granata, A. Vettoliere, M. Russo, B. Ruggiero, Noise theory of dc nano-SQUIDs based on Dayem nanobridges. Phys. Rev. B 84, 224516 (2011)CrossRefGoogle Scholar
  80. 80.
    A. Troeman, S. van der Ploeg, E. Il’Ichev, H.-G. Meyer, A. A. Golubov, M. Y. Kupriyanov et al., Temperature dependence measurements of the supercurrent-phase relationship in niobium nanobridges. Phys. Rev. B 77, 024509 (2008)Google Scholar
  81. 81.
    M. Schmelz, Y. Matsui, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders et al., Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Supercond. Sci. Technol. 28, 015004 (2014)CrossRefGoogle Scholar
  82. 82.
    K. Sokhey, S. Rai, G. Lodha, Oxidation studies of niobium thin films at room temperature by X-ray reflectivity. Appl. Surf. Sci. 257, 222–226 (2010)CrossRefGoogle Scholar
  83. 83.
    S. Franzen, Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J. Phys. Chem. C 112, 6027–6032 (2008)CrossRefGoogle Scholar
  84. 84.
    C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria et al., Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. J. Appl. Phys. 103, 093108 (2008)CrossRefGoogle Scholar
  85. 85.
    R.K. Verma, B.D. Gupta, Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. JOSA A 27, 846–851 (2010)CrossRefGoogle Scholar
  86. 86.
    A. Tubb, F. Payne, R. Millington, C. Lowe, Single-mode optical fibre surface plasma wave chemical sensor. Sens. Actuators B Chem. 41, 71–79 (1997)CrossRefGoogle Scholar
  87. 87.
    W. Peng, S. Banerji, Y.-C. Kim, K.S. Booksh, Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)CrossRefGoogle Scholar
  88. 88.
    Y. Zhang, C. Zhou, L. Xia, X. Yu, D. Liu, Wagon wheel fiber based multichannel plasmonic sensor. Opt. Express 19, 22863–22873 (2011)CrossRefGoogle Scholar
  89. 89.
    R. Verma, B. Gupta, Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement. J. Phys. D Appl. Phys. 41, 095106 (2008)CrossRefGoogle Scholar
  90. 90.
    S.-F. Wang, M.-H. Chiu, R.-S. Chang, Numerical simulation of a D-type optical fiber sensor based on the Kretchmann’s configuration and heterodyne interferometry. Sens. Actuators B Chem. 114, 120–126 (2006)CrossRefGoogle Scholar
  91. 91.
    Y.-C. Kim, W. Peng, S. Banerji, K.S. Booksh, Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 30, 2218–2220 (2005)CrossRefGoogle Scholar
  92. 92.
    M.-C. Navarrete, N. Díaz-Herrera, A. González-Cano, Ó. Esteban, Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sens. Actuators B Chem. 190, 881–885 (2014)CrossRefGoogle Scholar
  93. 93.
    B. Špačková, J. Homola, Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating. Opt. Express 17, 23254–23264 (2009)CrossRefGoogle Scholar
  94. 94.
    J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu et al., Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuators B Chem. 230, 206–211 (2016)CrossRefGoogle Scholar
  95. 95.
    T.T. Nguyen, K.T.L. Trinh, W.J. Yoon, N.Y. Lee, H. Ju, Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens. Actuators B Chem. 242, 1–8 (2017)CrossRefGoogle Scholar
  96. 96.
    K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23, 17179–17184 (2015)CrossRefGoogle Scholar
  97. 97.
    Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang et al., Electrochemical surface plasmon resonance fiber-optic sensor: in situ detection of electroactive biofilms. Anal. Chem. 88, 7609–7616 (2016)CrossRefGoogle Scholar
  98. 98.
    M.R. Hasan, S. Akter, T. Khatun, A.A. Rifat, M.S. Anower, Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56, 043108–043108 (2017)CrossRefGoogle Scholar
  99. 99.
    T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRefGoogle Scholar
  100. 100.
    M.R. Hasan, M.S. Anower, M.I. Hasan, S. Razzak, Polarization maintaining low-loss slotted core kagome lattice THz fiber. IEEE Photonics Technol. Lett. 28, 1751–1754 (2016)CrossRefGoogle Scholar
  101. 101.
    M.R. Hasan, M.A. Islam, A.A. Rifat, M.I. Hasan, A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64, 218–225 (2017)CrossRefGoogle Scholar
  102. 102.
    R. Slavı́k, J. Homola, J. Čtyroký, Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B Chem. 54, 74–79 (1999)CrossRefGoogle Scholar
  103. 103.
    D. Gao, C. Guan, Y. Wen, X. Zhong, L. Yuan, Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)CrossRefGoogle Scholar
  104. 104.
    W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 58, 1–8 (2014)CrossRefGoogle Scholar
  105. 105.
    Z. Fan, S. Li, Q. Liu, G. An, H. Chen, J. Li et al., High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)CrossRefGoogle Scholar
  106. 106.
    X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan et al., A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005 (2009)CrossRefGoogle Scholar
  107. 107.
    P. Bing, J. Yao, Y. Lu, Z. Li, A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels. Opt. Appl 42, 493–501 (2012)Google Scholar
  108. 108.
    W.L. Ng, A.A. Rifat, W.R. Wong, G. Mahdiraji, F.M. Adikan, A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics, 1–6 (2017)Google Scholar
  109. 109.
    A.A. Rifat, G. Mahdiraji, Y.M. Sua, R. Ahmed, Y. Shee, F.M. Adikan, Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 24, 2485–2495 (2016)CrossRefGoogle Scholar
  110. 110.
    X. Yang, Y. Lu, B. Liu, J. Yao, Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017)CrossRefGoogle Scholar
  111. 111.
    D. Li, W. Zhang, H. Liu, J. Hu, G. Zhou, High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength. IEEE Photonics J. 9, 1–8 (2017)Google Scholar
  112. 112.
    C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv et al., Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25, 14227–14237 (2017)CrossRefGoogle Scholar
  113. 113.
    G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang et al., Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 12, 465–471 (2017)CrossRefGoogle Scholar
  114. 114.
    X. Fu, Y. Lu, X. Huang, J. Yao, Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires. Opt. Appl 41, 941–951 (2011)Google Scholar
  115. 115.
    Y. Lu, M. Wang, C. Hao, Z. Zhao, J. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014)Google Scholar
  116. 116.
    Y. Lu, X. Yang, M. Wang, J. Yao, Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron. Lett. 51, 1675–1677 (2015)CrossRefGoogle Scholar
  117. 117.
    N. Luan, J. Yao, A hollow-core photonic crystal fiber-based SPR sensor with large detection range. IEEE Photonics J. (2017)Google Scholar
  118. 118.
    S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A. Heikal, S.S. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48, 142 (2016)CrossRefGoogle Scholar
  119. 119.
    A. Hassani, M. Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J. Opt. Soc. Am. B 26, 1550 (2009)CrossRefGoogle Scholar
  120. 120.
    E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48, 1403–1410 (2012)CrossRefGoogle Scholar
  121. 121.
    R. Otupiri, E. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6, 1–11 (2014)CrossRefGoogle Scholar
  122. 122.
    M.F.O. Hameed, Y.K. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10, 046016–046016 (2016)CrossRefGoogle Scholar
  123. 123.
    A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.M. Adikan, Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017)CrossRefGoogle Scholar
  124. 124.
    M. Tian, P. Lu, L. Chen, C. Lv, D. Liu, All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. 285, 1550–1554 (2012)CrossRefGoogle Scholar
  125. 125.
    Z. Tan, X. Li, Y. Chen, P. Fan, Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber. Plasmonics 9, 167–173 (2014)CrossRefGoogle Scholar
  126. 126.
    J.N. Dash, R. Jha, On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10, 1123–1131 (2015)CrossRefGoogle Scholar
  127. 127.
    D.F. Santos, A. Guerreiro, J.M. Baptista, SPR microstructured D-type optical fiber sensor configuration for refractive index measurement. IEEE Sens. J. 15, 5472–5477 (2015)CrossRefGoogle Scholar
  128. 128.
    N. Luan, R. Wang, W. Lv, J. Yao, Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 23, 8576–8582 (2015)CrossRefGoogle Scholar
  129. 129.
    Z. Fan, S. Li, H. Chen, Q. Liu, W. Zhang, G. An et al., Numerical analysis of polarization filter characteristics of D-shaped photonic crystal fiber based on surface plasmon resonance. Plasmonics 10, 675–680 (2015)CrossRefGoogle Scholar
  130. 130.
    Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, P. Fan, Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt. Express 22, 15049–15063 (2014)CrossRefGoogle Scholar
  131. 131.
    Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, Y. Geng, Experimental realization of D-shaped photonic crystal fiber SPR sensor. J. Phys. D Appl. Phys. 50, 025101 (2016)CrossRefGoogle Scholar
  132. 132.
    G. An, S. Li, H. Wang, X. Zhang, Metal Oxide-Graphene-Based Quasi-D-Shaped Optical Fiber Plasmonic Biosensor. IEEE Photonics J. 9, 1–9 (2017)CrossRefGoogle Scholar
  133. 133.
    R.K. Gangwar, V.K. Singh, Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics, 1–6 (2016)CrossRefGoogle Scholar
  134. 134.
    T. Huang, Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12, 583–588 (2017)CrossRefGoogle Scholar
  135. 135.
    X. Yang, Y. Lu, M. Wang, J. Yao, An exposed-core grapefruit fibers based surface plasmon resonance sensor. Sensors 15, 17106–17114 (2015)CrossRefGoogle Scholar
  136. 136.
    A.A. Rifat, G.A. Mahdiraji, R. Ahmed, D.M. Chow, Y. Sua, Y. Shee et al., Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8, 1–8 (2016)CrossRefGoogle Scholar
  137. 137.
    V. Popescu, N. Puscas, G. Perrone, Power absorption efficiency of a new microstructured plasmon optical fiber. JOSA B 29, 3039–3046 (2012)CrossRefGoogle Scholar
  138. 138.
    V. Popescu, N. Puscas, G. Perrone, Strong power absorption in a new microstructured holey fiber-based plasmonic sensor. JOSA B 31, 1062–1070 (2014)CrossRefGoogle Scholar
  139. 139.
    A. Rifat, G.A. Mahdiraji, Y. Shee, M.J. Shawon, F.M. Adikan, A novel photonic crystal fiber biosensor using surface plasmon resonance. Proced. Eng. 140, 1–7 (2016)CrossRefGoogle Scholar
  140. 140.
    A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12503, 1 (2018)Google Scholar
  141. 141.
    C. Liu, L. Yang, W. Su, F. Wang, T. Sun, Q. Liu et al., Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 382, 162–166 (2017)CrossRefGoogle Scholar
  142. 142.
    I.M. White, X. Fan, On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)CrossRefGoogle Scholar
  143. 143.
    R. Klenk, T. Walter, H.W. Schock, D. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. 5, 114–119 (1993)CrossRefGoogle Scholar
  144. 144.
    M.C. Barnes, D.-Y. Kim, H.S. Ahn, C.O. Lee, N.M. Hwang, Deposition mechanism of gold by thermal evaporation: approach by charged cluster model. J. Cryst. Growth 213, 83–92 (2000)CrossRefGoogle Scholar
  145. 145.
    L. Armelao, D. Barreca, G. Bottaro, G. Bruno, A. Gasparotto, M. Losurdo et al., RF-sputtering of gold on silica surfaces: evolution from clusters to continuous films. Mater. Sci. Eng., C 25, 599–603 (2005)CrossRefGoogle Scholar
  146. 146.
    P.J. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril et al., Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)CrossRefGoogle Scholar
  147. 147.
    M.B. Griffiths, P.J. Pallister, D.J. Mandia, S.N.T. Barry, Atomic layer deposition of gold metal. Chem. Mater. 28, 44–46 (2015)CrossRefGoogle Scholar
  148. 148.
    J.A. Sioss, C.D. Keating, Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett. 5, 1779–1783 (2005)CrossRefGoogle Scholar
  149. 149.
    Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu et al., Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection. IEEE Photonics Technol. Lett. 26, 777–780 (2014)CrossRefGoogle Scholar
  150. 150.
    M.K.K. Oo, Y. Han, R. Martini, S. Sukhishvili, H. Du, Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt. Lett. 34, 968–970 (2009)CrossRefGoogle Scholar
  151. 151.
    M.R. Hasan, M.A. Islam, M. Anower, S. Razzak, Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl. Opt. 55, 8441–8447 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ahmmed A. Rifat
    • 1
  • Md. Rabiul Hasan
    • 2
  • Rajib Ahmed
    • 3
  • Andrey E. Miroshnichenko
    • 1
    • 4
  1. 1.Nonlinear Physics Centre, Research School of Physics & EngineeringAustralian National UniversityActon, ACTAustralia
  2. 2.Department of Electronics & Telecommunication EngineeringRajshahi University of Engineering & TechnologyRajshahiBangladesh
  3. 3.Nanotechnology Laboratory, School of EngineeringUniversity of BirminghamBirminghamUK
  4. 4.School of Engineering and Information TechnologyUniversity of New South WalesCanberra, ACTAustralia

Personalised recommendations