Temperature Sensors Based on Plasmonic Photonic Crystal Fiber

  • Mohammad Y. Azab
  • Mohamed Farhat O. Hameed
  • S. S. A. Obayya
Chapter

Abstract

In this chapter, two novel highly sensitive surface plasmon resonance photonic crystal fiber (PCF) temperature sensors based on liquid crystal (LC) or alcohol mixture are presented and studied. Through this chapter, the coupling characteristics between the core-guided mode inside the PCF core infiltrated with either nematic LC or alcohol mixture and surface plasmon mode around the surface of nanogold wire are studied in detail. The structural geometrical parameters of the proposed designs, such as hole pitch, number of metallic rods, core diameter, and metallic rod diameter, are optimized to achieve highly temperature sensitivity. The suggested alcohol-based sensor offers high sensitivity of 3 nm/°C and 4.9 nm/°C for transverse electric (TE) and transverse magnetic (TM) polarizations, respectively. Moreover, the alcohol core sensor operates over a wider range of temperatures from −4 °C to 53 °C. In addition, the suggested LC-based sensor of compact device length of 20 μm proved to surpass the sensitivity of the recent temperature sensors. Using the LC instead of alcohol has improved the sensitivity to 10 nm/°C. The results are calculated using full-vectorial finite-element method with irregular meshing capabilities and perfect matched layer boundary conditions.

Keywords

Temperature sensors Photonic crystal fiber Liquid crystal Surface plasmon Alcohol 

References

  1. 1.
    F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quant. Electron. 50(6), 474–482 (2014)CrossRefGoogle Scholar
  2. 2.
    S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Liquid Crystal Photonic Crystal Fiber Sensors (Wiley, Computational Liquid Crystal Photonics, 2016)CrossRefGoogle Scholar
  3. 3.
    Y. Peng, J. Hou, Z. Huang, Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 51(26), 6361–6367 (2012)CrossRefGoogle Scholar
  4. 4.
    S.-J. Qiu, Y. Chen, F. Xu, Y.-Q. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37(5), 863–865 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, J.Q. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon. J. 6(3), 6801307 (2014)Google Scholar
  6. 6.
    D.J.J. Hu et al., A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT. IEEE Photon. J. 4(5), 2010–2016 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14(9), 16035–16045 (2014)CrossRefGoogle Scholar
  8. 8.
    M.F.O. Hameed, A.M. Heikal, B.M. Younis, M. Abdelrazzak, S.S.A. Obayya, Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter. Opt. Exp. 23(6), 7007–7020 (2015)CrossRefGoogle Scholar
  9. 9.
    E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quant. Electron. 48(11), 1403–1410 (2012)CrossRefGoogle Scholar
  10. 10.
    S.S.A. Obayya, B.M.A. Rahman, K.T.V. Grattan, Accurate finite element modal solution of photonic crystal fibres. IEE Proc. Optoelectron. 152(5), 241–246 (2005)CrossRefGoogle Scholar
  11. 11.
    M.F.O. Hameed, S.S.A. Obayya, Ultrashort silica liquid crystal photonic crystal fiber polarization rotator. Opt. Lett. 39(4), 1077–1080 (2014)CrossRefGoogle Scholar
  12. 12.
    M.F.O. Hameed, S.S.A. Obayya, K. Al Begain, A.M. Nasr, M.I. Abo El Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)CrossRefGoogle Scholar
  13. 13.
    M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. ElHefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE PTL 28, 59–62 (2015)CrossRefGoogle Scholar
  14. 14.
    TIE-19: Temperature Coefficient of Refractive Index, SCHOTT Technical Information, SCHOTT North America, Inc., (New York, NY, USA, 2012) pp. 1–12Google Scholar
  15. 15.
    M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27(21), 4754–4762 (2009)CrossRefGoogle Scholar
  16. 16.
    M.Y. Azab, M.F.O. Hameed, S.M. El-Hefnawy, S.S.A. Obayya, Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer. IET Optoelectron. 10(1), 1–7 (2015)Google Scholar
  17. 17.
    Y. Jeong, B. Yang, B. Lee, H.S. Seo, S. Choi, K. Oh, Electrically controllable long-period liquid crystal fiber gratings. IEEE Photon. Technol. Lett. 12(5), 519–521 (2000)CrossRefGoogle Scholar
  18. 18.
    C.A.G. Kalnins, H. Ebendorff-Heidepriem, N.A. Spooner, T.M. Monro, Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres. Opt. Mater. Exp. 2(1), 62–70 (2012)CrossRefGoogle Scholar
  19. 19.
    P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)CrossRefGoogle Scholar
  20. 20.
    H.W. Lee, Plasmonic photonic crystal fiber, in Max Plank Institute of Science and Light, Ph.D. dissertation, (Erlangen, Germany, 2012)Google Scholar
  21. 21.
    Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182–5184 (2004)CrossRefGoogle Scholar
  22. 22.
    S.G. Leon-Saval et al., Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Y. Azab
    • 1
  • Mohamed Farhat O. Hameed
    • 1
    • 2
  • S. S. A. Obayya
    • 3
    • 4
  1. 1.Mathematics and Engineering Physics Department, Faculty of EngineeringMansoura UniversityMansouraEgypt
  2. 2.Center for Photonics and Smart Materials and Nanotechnology Engineering ProgramZewail City of Science and TechnologyGizaEgypt
  3. 3.Centre for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  4. 4.Electronics and Communication Engineering Department, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations