Skip to main content

Temperature Sensors Based on Plasmonic Photonic Crystal Fiber

  • Chapter
  • First Online:

Abstract

In this chapter, two novel highly sensitive surface plasmon resonance photonic crystal fiber (PCF) temperature sensors based on liquid crystal (LC) or alcohol mixture are presented and studied. Through this chapter, the coupling characteristics between the core-guided mode inside the PCF core infiltrated with either nematic LC or alcohol mixture and surface plasmon mode around the surface of nanogold wire are studied in detail. The structural geometrical parameters of the proposed designs, such as hole pitch, number of metallic rods, core diameter, and metallic rod diameter, are optimized to achieve highly temperature sensitivity. The suggested alcohol-based sensor offers high sensitivity of 3 nm/°C and 4.9 nm/°C for transverse electric (TE) and transverse magnetic (TM) polarizations, respectively. Moreover, the alcohol core sensor operates over a wider range of temperatures from −4 °C to 53 °C. In addition, the suggested LC-based sensor of compact device length of 20 μm proved to surpass the sensitivity of the recent temperature sensors . Using the LC instead of alcohol has improved the sensitivity to 10 nm/°C. The results are calculated using full-vectorial finite-element method with irregular meshing capabilities and perfect matched layer boundary conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quant. Electron. 50(6), 474–482 (2014)

    Article  Google Scholar 

  2. S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Liquid Crystal Photonic Crystal Fiber Sensors (Wiley, Computational Liquid Crystal Photonics, 2016)

    Book  Google Scholar 

  3. Y. Peng, J. Hou, Z. Huang, Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 51(26), 6361–6367 (2012)

    Article  Google Scholar 

  4. S.-J. Qiu, Y. Chen, F. Xu, Y.-Q. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37(5), 863–865 (2012)

    Article  Google Scholar 

  5. Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, J.Q. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon. J. 6(3), 6801307 (2014)

    Google Scholar 

  6. D.J.J. Hu et al., A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT. IEEE Photon. J. 4(5), 2010–2016 (2012)

    Article  Google Scholar 

  7. N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14(9), 16035–16045 (2014)

    Article  Google Scholar 

  8. M.F.O. Hameed, A.M. Heikal, B.M. Younis, M. Abdelrazzak, S.S.A. Obayya, Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter. Opt. Exp. 23(6), 7007–7020 (2015)

    Article  Google Scholar 

  9. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quant. Electron. 48(11), 1403–1410 (2012)

    Article  Google Scholar 

  10. S.S.A. Obayya, B.M.A. Rahman, K.T.V. Grattan, Accurate finite element modal solution of photonic crystal fibres. IEE Proc. Optoelectron. 152(5), 241–246 (2005)

    Article  Google Scholar 

  11. M.F.O. Hameed, S.S.A. Obayya, Ultrashort silica liquid crystal photonic crystal fiber polarization rotator. Opt. Lett. 39(4), 1077–1080 (2014)

    Article  Google Scholar 

  12. M.F.O. Hameed, S.S.A. Obayya, K. Al Begain, A.M. Nasr, M.I. Abo El Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)

    Article  Google Scholar 

  13. M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. ElHefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE PTL 28, 59–62 (2015)

    Article  Google Scholar 

  14. TIE-19: Temperature Coefficient of Refractive Index, SCHOTT Technical Information, SCHOTT North America, Inc., (New York, NY, USA, 2012) pp. 1–12

    Google Scholar 

  15. M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27(21), 4754–4762 (2009)

    Article  Google Scholar 

  16. M.Y. Azab, M.F.O. Hameed, S.M. El-Hefnawy, S.S.A. Obayya, Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer. IET Optoelectron. 10(1), 1–7 (2015)

    Google Scholar 

  17. Y. Jeong, B. Yang, B. Lee, H.S. Seo, S. Choi, K. Oh, Electrically controllable long-period liquid crystal fiber gratings. IEEE Photon. Technol. Lett. 12(5), 519–521 (2000)

    Article  Google Scholar 

  18. C.A.G. Kalnins, H. Ebendorff-Heidepriem, N.A. Spooner, T.M. Monro, Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres. Opt. Mater. Exp. 2(1), 62–70 (2012)

    Article  Google Scholar 

  19. P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  Google Scholar 

  20. H.W. Lee, Plasmonic photonic crystal fiber, in Max Plank Institute of Science and Light, Ph.D. dissertation, (Erlangen, Germany, 2012)

    Google Scholar 

  21. Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85(22), 5182–5184 (2004)

    Article  Google Scholar 

  22. S.G. Leon-Saval et al., Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azab, M.Y., Hameed, M.F.O., Obayya, S.S.A. (2019). Temperature Sensors Based on Plasmonic Photonic Crystal Fiber. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics