Skip to main content

Basic Principles of Biosensing

  • Chapter
  • First Online:
Book cover Computational Photonic Sensors

Abstract

Recently, optical sensors have been improved extensively due to the rising need of sensing applications in different specialties such as, medicine, military, environment, food quality control. The improvement of the photonic technologies based on the CMOS compatible silicon-on-insulator (SOI) and photonic crystal structures improves the sensing performance significantly. This chapter presents the basic principles of the sensing process. Additionally, it introduces the different configurations of optical sensors based on working principle, sensor design, and detection purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Santos, F. Farahi, Handbook of Optical Sensors (CRC Press Taylor & Francis Group, 2015)

    Google Scholar 

  2. G. Rajan, Optical Fiber Sensors Advanced Techniques and Applications (CRC Press Taylor & Francis Group, 2015)

    Google Scholar 

  3. G. Rajan, Y. Semenova, G. Farrell, An all-fiber temperature sensor based on a macro-bend single-mode fiber loop. Electron. Lett. 44, 1123–1124 (2008)

    Article  Google Scholar 

  4. L.M. Smith, J.Z. Saunders, R.J. Kaiser, P. Hughes, C.R. Dodd, C.R. Cornell, C. Heiner, S.B.H. Kent, L.E. Hood, Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679 (1986)

    Article  Google Scholar 

  5. R.B. Thompson(ed.), Fluorescence Sensors and Biosensors (CRC Press, 2005)

    Google Scholar 

  6. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14(18), R597 (2002)

    Article  Google Scholar 

  7. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3(9), 1229–1233 (2003)

    Article  Google Scholar 

  8. T.R. Wolinski, Polarimetric optical fibers and sensors. Prog. Opt. 40, 1–75 (2000)

    Article  Google Scholar 

  9. T.R. Wolinski, P. Lesiak, A.W. Domanski, Polarimetric optical fiber sensors of a new generation for industrial applications. Bullet. Polish Acad. Sci. Tech. Sci. 56(2), 125–132 (2008)

    Google Scholar 

  10. X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review. Analytica chimica Acta 620(1), 8–26 (2008)

    Article  Google Scholar 

  11. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003)

    Article  Google Scholar 

  12. K.S. Phillips, Q. Cheng, Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal. Bioanal. Chem. 387(5), 1831–1840 (2007)

    Article  Google Scholar 

  13. M.A. Cooper, Optical biosensors in drug discovery. Nat. Rev. Drug Disc. 1, 515–528 (2002)

    Article  Google Scholar 

  14. E. Stenberg, B. Persson, H. Roos, C. Urbaniczky, Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Inter. Sci. 143, 513–526 (1991)

    Article  Google Scholar 

  15. K. Matsubara, S. Kawata, S. Minami, Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27(6), 1160–1163 (1988)

    Article  Google Scholar 

  16. B. Liedberg, I. Lundström, E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors Actuat. B Chem. 11(1–3), 63–72 (1993)

    Article  Google Scholar 

  17. A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)

    Article  Google Scholar 

  18. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, L.M. Lechuga, An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14(8), 907 (2003)

    Article  Google Scholar 

  19. A. Ymeti, J.S. Kanger, R. Wijn, P.V. Lambeck, J. Greve, Development of a multichannel integrated interferometer immunosensor, in Transducers’ 01 Eurosensors XV (Springer, Berlin Heidelberg 2001), pp. 354–357

    Chapter  Google Scholar 

  20. C.A. Barrios, M.J. Bañuls, V. González-Pedro, K.B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, R. Casquel, Label-free optical biosensing with slot-waveguides. Opt. Lett. 33(7), 708–710 (2008)

    Article  Google Scholar 

  21. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)

    Article  Google Scholar 

  22. Ian M. White, Xudong Fan, On the performance quantification of resonant refractive index sensors. Opt. Expr. 16(2), 1020–1028 (2008)

    Article  Google Scholar 

  23. X. Fan, I.M. White, H. Zhu, J.D. Suter, H. Oveys, Overview of novel integrated optical ring resonator bio/chemical sensors, in International Society for Optics and Photonics Laser Resonators and Beam Control IX, Feb. 2007 vol. 6452, p. 64520

    Google Scholar 

  24. T. Claes, J.G. Molera, K. De Vos, E. Schacht, R. Baets, P. Bienstman, Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photon. J. 1(3), 197–204 (2009)

    Article  Google Scholar 

  25. X. Tu, J. Song, T.Y. Liow, M.K. Park, J.Q. Yiying, J.S. Kee, M. Yu, G.Q. Lo, Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. Opt. Expr. 20(3), 2640–2648 (2012)

    Article  Google Scholar 

  26. F. Dell’Olio, V.M. Passaro, Optical sensing by optimized silicon slot waveguides. Opt. Express 15(8), 4977–4993 (2007)

    Article  Google Scholar 

  27. T. Dar, J. Homola, B.A. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34), 8195–8202 (2012)

    Article  Google Scholar 

  28. M.F.O. Hameed, A.S. Saadeldin, E.M. Elkaramany, S.S.A. Obayya, Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017)

    Article  Google Scholar 

  29. S. Ghosh, B.M.A. Rahman, An innovative straight resonator incorporating a vertical slot as an efficient bio-chemical sensor. IEEE J. Sel. Top. Quant. Electron. 23(2), 1–8 (2017)

    Article  Google Scholar 

  30. B. Troia, A. Paolicelli, F. De Leonardis, V.M. Passaro, Photonic crystals for optical sensing: A review (In Advances in Photonic Crystals, InTech, 2013)

    Google Scholar 

  31. J. García-Rupérez, V. Toccafondo, M.J. Bañuls, A. Griol, J.G. Castelló, S. Peransi-Llopis, A. Maquieira, Single strand DNA hybridization sensing using photonic crystal waveguide based sensor, in 7th IEEE International Conference on Group IV Photonics (September 2010), 978-1-4244-6346-6, pp. 180–182

    Google Scholar 

  32. N. Griffete, H. Frederich, A. Maître, M.M. Chehimi, S. Ravaine, C. Mangeney, Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J. Mater. Chem. 21(34), 13052–13055 (2011)

    Article  Google Scholar 

  33. H. Lin, Z. Yi, J. Hu, Double resonance 1-D photonic crystal cavities for single molecule mid-infrared photothermal spectroscopy: theory and design. Opt. Lett. 37(8), 1304–1306 (2012)

    Article  Google Scholar 

  34. N.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quant. Electron. 49(1), 5 (2017)

    Article  Google Scholar 

  35. S. Jindal, S. Sobti, M. Kumar, S. Sharma, M.K. Pal, Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J. 16(10), 3705–3710 (2016)

    Article  Google Scholar 

  36. L. Xiao, W. Jin, M.S. Demokan, Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Opt. Expr. 15(24), 15637–15647 (2007)

    Article  Google Scholar 

  37. X. Yang, C. Shi, R. Newhouse, J.Z. Zhang, C. Gu, Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int. J. Opt. 754610, 1–11 (2011)

    Article  Google Scholar 

  38. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. 598178, 1–21 (2012)

    Article  Google Scholar 

  39. S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 48(2), 142 (2016)

    Article  Google Scholar 

  40. M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. 28(1), 59–62 (2016)

    Article  Google Scholar 

  41. M.F.O. Hameed, Y.K. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hameed, M.F.O., Saadeldin, A.S., Elkaramany, E.M., Obayya, S.S.A. (2019). Basic Principles of Biosensing. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics