Basic Principles of Surface Plasmon Resonance

  • A. M. Heikal
  • Mohamed Farhat O. Hameed
  • S. S. A. Obayya


In this chapter, the basic concept concerning the surface plasmon phenomena is presented. Different types of surface plasmon wave (localized and propagating) are reviewed. Moreover, the thin metallic film surface plasmon waveguide is analyzed in order to show the symmetric and asymmetric modes. Finally, other types of surface plasmon waveguides are discussed to show the trade-off between the confinement of the field profile and the attenuation loss.


Plasmon Plasmonic Slab waveguide Symmetric mode Asymmetric mode Surface plasmon mode Attenuation loss Diffraction limit 


  1. 1.
    E. Economou, Surface plasmons in thin films. Phys. Rev. 182(2), 539–554 (1969)CrossRefGoogle Scholar
  2. 2.
    A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)CrossRefGoogle Scholar
  3. 3.
    M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer demultiplexer. IEEE Photon. J. 7(5), 1–10 (2015)CrossRefGoogle Scholar
  4. 4.
    B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling enhancement of plasmonic liquid photonic crystal fiber. Plasmonics 12(5), 1529–1535 (2016)CrossRefGoogle Scholar
  5. 5.
    M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)CrossRefGoogle Scholar
  6. 6.
    M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)CrossRefGoogle Scholar
  7. 7.
    A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)CrossRefGoogle Scholar
  8. 8.
    S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor, Optic. Quant. Electron. 48(2) (2016)Google Scholar
  9. 9.
    F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quant. Electron. 50(6), 474–482 (2014)CrossRefGoogle Scholar
  10. 10.
    A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling characteristic of a novel hybrid long-range plasmonic waveguide including bends. IEEE J. Quant. Electron. 49(8), 621–627 (2013)CrossRefGoogle Scholar
  11. 11.
    A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Maier, Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J. Sel. Top. Quant. Electron. 12(6), 1214–1220 (2006)CrossRefGoogle Scholar
  13. 13.
    R. Zia, M. Selker, P. Catrysse, M. Brongersma, Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12), 2442 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475 (1997)CrossRefGoogle Scholar
  15. 15.
    T. Koo, S. Chan, A. Berlin, Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt. Lett. 30(9), 1024 (2005)CrossRefGoogle Scholar
  16. 16.
    B. Rothenhäusler, W. Knoll, Surface–plasmon microscopy. Nature 332(6165), 615–617 (1988)CrossRefGoogle Scholar
  17. 17.
    M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331 (1998)CrossRefGoogle Scholar
  18. 18.
    Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, X. Zhang, Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9(1), 462–466 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, H. Atwater, Plasmonics-A route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)CrossRefGoogle Scholar
  20. 20.
    M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quant. Electron. 47(6), 1487–1494 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Burke, G. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33(8), 5186–5201 (1986)CrossRefGoogle Scholar
  22. 22.
    S. Al-Bader, M. Imtaar, Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells. IEEE J. Quant. Electron. 28(2), 525–533 (1992)CrossRefGoogle Scholar
  23. 23.
    S. Al-Bader, M. Imtaar, Optical fiber hybrid-surface plasmon polaritons. J. Opt. Soc. Am. B 10(1), 83 (1993)CrossRefGoogle Scholar
  24. 24.
    P. Berini, Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. Opt. Express 7(10), 329 (2000)CrossRefGoogle Scholar
  25. 25.
    P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys. Rev. B, 63(12) (2001)Google Scholar
  26. 26.
    R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt. Lett. 25(11), 844 (2000)CrossRefGoogle Scholar
  27. 27.
    A. Degiron, C. Dellagiacoma, J. McIlhargey, G. Shvets, O. Martin, D. Smith, Simulations of hybrid long-range plasmon modes with application to 90° bends. Opt. Lett. 32(16), 2354 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Holmgaard, J. Gosciniak, S. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 18(22), 23009 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Guo, R. Adato, Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express 16(2), 1232 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Heikal
    • 1
    • 3
  • Mohamed Farhat O. Hameed
    • 2
    • 4
  • S. S. A. Obayya
    • 1
    • 3
  1. 1.Center for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  2. 2.Center for Photonics and Smart Materials and Nanotechnology Engineering ProgramZewail City of Science and TechnologyGizaEgypt
  3. 3.Electronics and Communication Engineering Department, Faculty of EngineeringMansoura UniversityMansouraEgypt
  4. 4.Mathematics and Engineering Physics Department, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations