Fundamentals of Photonic Crystals

  • Essam M. A. Elkaramany
  • Mohamed Farhat O. Hameed
  • S. S. A. Obayya


In this chapter, the basic principles of photonic crystal (PhC) structures and their possible applications are presented. In this context, one-dimensional photonic crystals, Bloch’s theorem including Maxwell’s equations in periodic media, are discussed thoroughly. Additionally, the different types of defects, bandgap size, and the relation between the Brillouin zone and the reciprocal lattice are introduced. Further, the different types of PhCs such as one-dimensional, two-dimensional, and three-dimensional structures are presented in detail.


Photonic crystal Bandgap Defects Bloch’s theorem Photonic crystal fibers 


  1. 1.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995)zbMATHGoogle Scholar
  2. 2.
    M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. IEEE J. Lightwave Technol. 27(21), 4754–4762 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)CrossRefGoogle Scholar
  4. 4.
    S.G. Johnson, J.D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer Academic Publishers, Boston, 2002)Google Scholar
  5. 5.
    E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  6. 6.
    S. John, Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  7. 7.
    E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67(17) (1991)CrossRefGoogle Scholar
  8. 8.
    T.F. Krauss, R.M. De La Rue, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383(6602) (1996)CrossRefGoogle Scholar
  9. 9.
    S.G. Johnson, J.D. Joannopoulos, Introduction to Photonic Crystals: Bloch’s Theorem, Band Diagrams, and Gaps (But no Defects), Pamphlet. Feb 2003Google Scholar
  10. 10.
    P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)Google Scholar
  11. 11.
    N. Ashcroft, N. Mermin, Solid State Physics (Harcourt College Publishers, 1976)Google Scholar
  12. 12.
    S. Satpathy, Ze Zhang, M. R, Theory of photonic bands in three—dimensional periodic dielectric structures. Phys. Rev. Lett. 64, 1239–1242 (1990)CrossRefGoogle Scholar
  13. 13.
    K.M.C. Ho, T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)CrossRefGoogle Scholar
  14. 14.
    C.T. Chan, K.M. Ho, C.M. Soukoulis, Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563–568CrossRefGoogle Scholar
  15. 15.
    H.S. Sozuer, J.P. Dowling, Photonic band calculations for woodpile structures. J. Mod. Opt. 41(2), 231–239 (1994)CrossRefGoogle Scholar
  16. 16.
    H.S. Sozuer, J.W. Haus, Photonic bands: Simple-cubis lattice. J. Opt. Soc. Am. B 10(2), 296–302 (1993)CrossRefGoogle Scholar
  17. 17.
    S.-Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzychi, S.R. Kurtz, J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998)CrossRefGoogle Scholar
  18. 18.
    S.G. Johnson, J.D. Joannopoulos, Three dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Appl. Phys. Lett. 77, 3490–3492 (2000)CrossRefGoogle Scholar
  19. 19.
    S.L. McCall, P.M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, Microwave propagation in two dimensional dielectric lattices, Phys. Rev. Lett. 67, 2017–2020 (1991)CrossRefGoogle Scholar
  20. 20.
    R.D. Meade, A.M. Rape, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, Accurate theoretical analysis of photonic band-gap materials. Phys. Rev. B 48, 8434–8437 (1993)CrossRefGoogle Scholar
  21. 21.
    E. Istrate, E.H. Sargent, Photonic crystal Heterostructures and interfaces. Rev. Mod. Phys. 78, 455–481 (2006)CrossRefGoogle Scholar
  22. 22.
    M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Highly nonlinear birefringent soft glass photonic crystal fiber with liquid crystal core. IEEE Photonics Technol. Lett. 23(20), 1478–1480 (2011)CrossRefGoogle Scholar
  23. 23.
    M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Novel passive polarization rotator based on spiral photonic crystal fiber. IEEE Photonics Technol. Lett. 25(16), 1578–1581 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Russell, Photonic crystal fibres. Science 299, 358–362 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Mekis, J.C. Chin, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998)CrossRefGoogle Scholar
  26. 26.
    S.-Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, J.D. Joannopoulos, High transmission throuth sharp bends in photonic crystal waveguide. Phys. Rev. Lett. 77(81), 3787–3790 (1996)CrossRefGoogle Scholar
  27. 27.
    S. Fan, G. Steven, J.D. Joannopoulos, C. Manolatou, H.A. Haus, Waveguide branches in photonic crystal. J. Opt. Soc. Am. B 18(2), 162–165 (2001)CrossRefGoogle Scholar
  28. 28.
    S. Fan, G. Steven, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Channel drop tunneling throught localized states. Phys. Rev. Lett. 80(5), 960–963 (1998)CrossRefGoogle Scholar
  29. 29.
    C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantun Electron. 35(9), 1322–1331 (1999)CrossRefGoogle Scholar
  30. 30.
    F. Parandin, M.M. Karkhanehchi, Tetrahertz all-optical nor and lgic gates based on 2d photonic crystal. Superlattices Microstruct. 101, 253–260 (2016)CrossRefGoogle Scholar
  31. 31.
    S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications (John, Apr 2016)CrossRefGoogle Scholar
  32. 32.
    A. Salmanpour, S.M. Nejad, A. Bahrami, Photonic crystal logic gates: an overview. Opt. Quantum Electron. 47(7), 2249–2275 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, All optical nor and nand gate based on nonlinear photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 125(19), 5701–5704 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Chanalia, A. Gupta, Realization of high speed all-optical logic gates based on the nonlinear characteristics of a SOA. Indian J. Sci. Technol. 9(36) (2016)Google Scholar
  35. 35.
    R. Fan, X. Yang, X. Meng, X. Sun, 2d photonic crystal logic gates based on self- collimated effect. J. Phys. D Appl. Phys. 49(32), 325104 (2016)Google Scholar
  36. 36.
    S.C. Xavier, B.E. Carolin, A.P. Kabilan, W. Johnson, Compact photonic crystal integrated circuit for all- optical logic operations. IET Optoelectron. 10(4), 142–147 (2016)CrossRefGoogle Scholar
  37. 37.
    Z.H. Chen, Q.L. Tan, J. Lao, Y. Liang, X.G. Huang, Reconfigurable and tunable flat graphene photonic crystal circuits. Nanoscale, 7(25), 10912–10917 (2015)CrossRefGoogle Scholar
  38. 38.
    N.F.F. Areed, A. El Fakharany, M.F.O. Hameed, S.S.A. Obayya, Controlled optical photonic crystal AND gate using nematic liquid crystal layers. Opt. Quantum Electron. 49(1), 1–12 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Opt. Commun. 284(14), 3528–3533 (2011)CrossRefGoogle Scholar
  40. 40.
    C. Tang, X. Dou, Y. Lin, B. Wu, Q. Zhao, Design of all-optical logic gates avoiding external shifters in a two-dimensional photonic crystal based on multi-mode interference for bpsk signals. Opt. Commun. 316, 49–55 (2014)CrossRefGoogle Scholar
  41. 41.
    E. hak Shaik, N Rangaswamy, Multi-mode interference- based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)CrossRefGoogle Scholar
  42. 42.
    N.M. D’souza, V. Mathew, Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)CrossRefGoogle Scholar
  43. 43.
    B.D. Clader, S.M. Hendrickson, Microresonator-based all-optical transistor. J. Opt. Soc. Am. B 30(5), 1329 (2013)CrossRefGoogle Scholar
  44. 44.
    V.G. Arkhipkin, S.A. Myslivets, All-optical transistor using a photonic-crystal cavity with an active Raman gain medium. Phys. Rev. A. 88(3) (2013)Google Scholar
  45. 45.
    P. Andreakou, S.V. Poltavtsev, J.R. Leonard, E.V. Calman, M. Remeika, Y.Y. Kuznetsova, L.V. Butov, J. Wilkes, M. Hanson, A.C. Gossard, Optically controlled excitonic transistor. Appl. Phys. Lett. 104(9), 091101 (2014)CrossRefGoogle Scholar
  46. 46.
    C.Y. Hu, Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, Article number: 45582 (2017)CrossRefGoogle Scholar
  47. 47.
    M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett. 22(3), 188–190 (2010)CrossRefGoogle Scholar
  48. 48.
    M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Passive polarization converters based on photonic crystal fiber with L-shaped core region. IEEE J. Lightwave Technol. 30(3), 283–289 (2012)CrossRefGoogle Scholar
  49. 49.
    M.F.O. Hameed, S.S.A. Obayya, design consideration of polarization converter based on silica photonic crystal fiber. IEEE J. Quantum Electron. 48(8) (2012)CrossRefGoogle Scholar
  50. 50.
    K. Saitoh, Y. Sato, M. Koshiba, Coupling characteristics of dualcore photonic crystal fiber couplers. Opt. Exp. 11(24), 3188–3195 (2003)CrossRefGoogle Scholar
  51. 51.
    M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, A.M. Nasr, M.I. Abo el Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)CrossRefGoogle Scholar
  52. 52.
    N. Florous, K. Saitoh, M. Koshiba, A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express 13(19), 7365–7373 (2005)CrossRefGoogle Scholar
  53. 53.
    R.A.H. Ali, M.F.O. Hameed, S.S.A. Obayya, Ultra-compact polarization splitter based on silica photonic liquid crystal fiber. J. Appl. Comput. Electromagnet. Soc. (ACES) 30(6), 599–607 (2015)Google Scholar
  54. 54.
    M.Y. Chen, J. Zhou, Polarization-independent splitter based on all solid silica-based photonic-crystal fibers. J. Lightw. Technol. 24(12), 5082–5086 (2006)CrossRefGoogle Scholar
  55. 55.
    J. Lægsgaard, O. Bang, A. Bjarklev, Photonic crystal fiber design for broadband directional coupling. Opt. Lett. 29(21), 2473–2475 (2004)CrossRefGoogle Scholar
  56. 56.
    N.J. Florous, K. Saitoh, M. Koshiba, Synthesis of polarizationin dependent splitters based on highly birefringent dual-core photonic crystal fiber platforms. IEEE Photonics Technol. Lett. 18(11), 1231–1233 (2006)CrossRefGoogle Scholar
  57. 57.
    M.F.O. Hameed, S.S.A. Obayya, R.J. Wiltshire, Multiplexer-demultiplexer based on nematic liquid crystal photonic crystal fiber coupler. J. Opt. Quantum Electron. 41(4), 315–326 (2009)CrossRefGoogle Scholar
  58. 58.
    M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer. Photonics J. IEEE 7(5), 1–10 (2015)CrossRefGoogle Scholar
  59. 59.
    K. Saitoh, J.N. Florous, M. Koshiba, M. Skorobogatiy, Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Opt. Express 13(25), 10327–10335 (2005)CrossRefGoogle Scholar
  60. 60.
    J.N. Dash, R. Jha, Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014)CrossRefGoogle Scholar
  61. 61.
    M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photonics 8(3), 6802912–6802912 (2016)CrossRefGoogle Scholar
  62. 62.
    M.F.O. Hameed, M. El-Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28(1), 59–62 (2015). Scholar
  63. 63.
    E.K. Akowuah et al., Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 48(11), 1403–1410 (2012)CrossRefGoogle Scholar
  64. 64.
    S.I. Azzam, R.E.A. Shehata, M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. J. Opt. Quantum Electron. 48, 142, (2016 )Google Scholar
  65. 65.
    J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54(1/2), 3–15 (1999)CrossRefGoogle Scholar
  66. 66.
    R. Jha, A.K. Sharma, High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt. Lett. 34(6), 749 (2009)CrossRefGoogle Scholar
  67. 67.
    M.S. Mohamed, M.F.O. Hameed, N.F.F. Areed, M.M. El-Okr, S.S.A. Obayya, Analysis of highly sensitive photonic crystal biosensor for glucose monitoring. J. Appl. Comput. Electromagnet. Soc. (ACES) 31(7), 836–842 (2016)Google Scholar
  68. 68.
    N.F.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. J. Opt. Quantum Electron. 49(5), 1–12 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Essam M. A. Elkaramany
    • 1
  • Mohamed Farhat O. Hameed
    • 2
    • 3
  • S. S. A. Obayya
    • 4
    • 5
  1. 1.Faculty of Engineering, Engineering Mathematics and Physics DepartmentCairo UniversityGizaEgypt
  2. 2.Center for Photonics and Smart Materials and Nanotechnology Engineering ProgramZewail City of Science and TechnologyGizaEgypt
  3. 3.Mathematics and Engineering Physics Department, Faculty of EngineeringMansoura UniversityMansouraEgypt
  4. 4.Centre for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  5. 5.Electronics and Communication Engineering Department, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations