Advertisement

Development of Photonic Crystal Fiber-Based Gas/Chemical Sensors

  • Ahmmed A. Rifat
  • Kawsar Ahmed
  • Sayed Asaduzzaman
  • Bikash Kumar Paul
  • Rajib Ahmed
Chapter

Abstract

The development of highly sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response, and efficient light-controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core–cladding materials; as a result, evanescent field can be enhanced significantly which is the main component of the PCF-based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF-based gas/chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber-based gas/chemical sensors, (4) study the effects of different core–cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF-based gas/chemical sensors and possible solutions.

Keywords

Photonic crystal fiber Optical fiber sensors Gas sensor Chemical sensors Optical sensing and sensors 

References

  1. 1.
    T.N. Do, Y. Visell, Stretchable, twisted conductive microtubules for wearable computing, robotics, electronics, and healthcare. Sci. Rep. 7 (2017)Google Scholar
  2. 2.
    D. Ahuja, D. Parande, Optical sensors and their applications. J. Sci. Res. Rev. 1, 060–068 (2012)CrossRefGoogle Scholar
  3. 3.
    J.C. Yeo, C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2 (2016)Google Scholar
  4. 4.
    S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski, G.M. Whitesides, Camouflage and display for soft machines. Science 337, 828–832 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458 (2013)CrossRefGoogle Scholar
  8. 8.
    I.E. Araci, B. Su, S.R. Quake, Y. Mandel, An implantable microfluidic device for self-monitoring of intraocular pressure. Nat. Med. 20, 1074–1078 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Ding, Y. Jiang, R. Gao, Y. Liu, High-temperature fiber-optic Fabry-Perot interferometric sensors. Rev. Sci. Instrum. 86, 055001 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He et al., High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 5, 7624 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, D. Wang, W. Chen, Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement. Sci. Rep. 6 (2016)Google Scholar
  12. 12.
    S. Asaduzzaman, B.K. Paul, K. Ahmed, Enhancement of sensitivity and birefringence of a gas sensor on micro-core based photonic crystal fiber, in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (2016), pp. 1–4Google Scholar
  13. 13.
    N.L. Andrews, R. Ross, D. Munzke, C. van Hoorn, A. Brzezinski, J.A. Barnes et al., In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber. Opt. Express 24, 14086–14099 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Feng, W. Feng, C. Tao, D. Deng, X. Qin, R. Chen, Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sens. Actuators B Chem. 247, 540–545 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Zhao, Z.-Q. Deng, J. Li, Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 202, 557–567 (2014)CrossRefGoogle Scholar
  16. 16.
    T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRefGoogle Scholar
  17. 17.
    R. Cregan, B. Mangan, J. Knight, T. Birks, P.S.J. Russell, P. Roberts et al., Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)CrossRefGoogle Scholar
  18. 18.
    M. Arjmand, R. Talebzadeh, Optical filter based on photonic crystal resonant cavity. Optoelectron. Adv. Mater.-Rapid Commun. 9, 32–35 (2015)Google Scholar
  19. 19.
    K. Fasihi, High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightwave Technol. 32, 3126–3131 (2014)CrossRefGoogle Scholar
  20. 20.
    K. Cui, Q. Zhao, X. Feng, Y. Huang, Y. Li, D. Wang et al., Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Appl. Phys. Lett. 100, 201102 (2012)CrossRefGoogle Scholar
  21. 21.
    J.-M. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude, High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Gao, R.-J. Shiue, X. Gan, L. Li, C. Peng, I. Meric et al., High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett. 15, 2001–2005 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Xuan, J. Ma, W. Jin, W. Jin, Polarization converters in highly birefringent microfibers. Opt. Express 22, 3648–3660 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.-H. Chang, Y.-Y. Jhu, C.-J. Wu, Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 285, 1501–1504 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Liu, H. Salemink, All-optical on-chip sensor for high refractive index sensing in photonic crystals. EPL (Europhys. Lett.) 107, 34008 (2014)CrossRefGoogle Scholar
  26. 26.
    A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji et al., Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Hu, X. Dong, W.C. Wong, L.H. Chen, K. Ni, C.C. Chan, Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating. Appl. Opt. 54, 2647–2652 (2015)CrossRefGoogle Scholar
  28. 28.
    A.A. Rifat, M.R. Hasan, R. Ahmed, H. Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J. Nanophotonics 12, 012503 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Pushkarsky, M. Webber, O. Baghdassarian, L. Narasimhan, C.K.N. Patel, Laser-based photoacoustic ammonia sensors for industrial applications. Appl. Phys. B Lasers Opt. 75, 391–396 (2002)CrossRefGoogle Scholar
  30. 30.
    G. Whitenett, G. Stewart, K. Atherton, B. Culshaw, W. Johnstone, Optical fibre instrumentation for environmental monitoring applications. J. Opt. A Pure Appl. Opt. 5, S140 (2003)CrossRefGoogle Scholar
  31. 31.
    J.P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhães, R. Amezcua-Correa, J.L. Santos, et al., Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. J. Sens. 2009 (2009)Google Scholar
  32. 32.
    R.A. Aoni, R. Ahmed, M.M. Alam, and S. Razzak, Optimum design of a nearly zero ultra-flattened dispersion with lower confinement loss photonic crystal fibers for communication systems. Int. J. Sci. Eng. Res. 4 (2013)Google Scholar
  33. 33.
    M.S. Habib, M.S. Habib, S.A. Razzak, M.A. Hossain, Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461–467 (2013)CrossRefGoogle Scholar
  34. 34.
    S.A. Razzak, M.A.G. Khan, F. Begum, S. Kaijage, Guiding properties of a decagonal photonic crystal fiber. J. Microwaves Optoelectron. Electromagn. Appl. (JMOe) 6, 44–49 (2007)Google Scholar
  35. 35.
    R. Ahmmed, R. Ahmed, S.A. Razzak, Design of large negative dispersion and modal analysis for hexagonal, square, FCC and BCC photonic crystal fibers, in 2013 International Conference on Informatics, Electronics & Vision (ICIEV) (2013), pp. 1–6.Google Scholar
  36. 36.
    Y. Hou, F. Fan, Z.-W. Jiang, X.-H. Wang, S.-J. Chang, Highly birefringent polymer terahertz fiber with honeycomb cladding. Opt. Int. J. Light Electron Opt. 124, 3095–3098 (2013)CrossRefGoogle Scholar
  37. 37.
    R. Hao, Z. Li, G. Sun, L. Niu, Y. Sun, Analysis on photonic crystal fibers with circular air holes in elliptical configuration. Opt. Fiber Technol. 19, 363–368 (2013)CrossRefGoogle Scholar
  38. 38.
    M.R. Hasan, S. Akter, T. Khatun, A.A. Rifat, M.S. Anower, Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56, 043108–043108 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Hecht, Understanding fiber optics (Jeff Hecht, 2015)CrossRefGoogle Scholar
  40. 40.
    E. Udd, Fiber optic sensors based on the Sagnac interferometer and passive ring resonator. Fiber opt. Sens. Introduc.Eng. Sci. (1991)Google Scholar
  41. 41.
    P. Sharan, S. Bharadwaj, F.D. Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection, in 2014 International Conference on the IMpact of E-Technology on US (IMPETUS) (2014), pp. 20–24.Google Scholar
  42. 42.
    J. Park, S. Lee, S. Kim, K. Oh, Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 19, 1921–1929 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Olyaee, A. Naraghi, V. Ahmadi, High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Opt. Int. J. Light Electron Opt. 125, 596–600 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor. Opt. Int. J. Light Electron Opt. 125, 6274–6278 (2014)CrossRefGoogle Scholar
  45. 45.
    W. Jin, H. Ho, Y. Cao, J. Ju, L. Qi, Gas detection with micro-and nano-engineered optical fibers. Opt. Fiber Technol. 19, 741–759 (2013)CrossRefGoogle Scholar
  46. 46.
    E. Austin, A. van Brakel, M.N. Petrovich, D.J. Richardson, Fibre optical sensor for C 2 H 2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Asaduzzaman, K. Ahmed, Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)CrossRefGoogle Scholar
  48. 48.
    K. Ahmed, M. Morshed, Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sens. Res. 7, 1–6 (2016)CrossRefGoogle Scholar
  49. 49.
    S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5, 748 (2016)CrossRefGoogle Scholar
  50. 50.
    Q. Liu, S. Li, H. Chen, Z. Fan, J. Li, Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode. IEEE Photonics J. 7, 1–9 (2015)Google Scholar
  51. 51.
    Y. Lu, M. Wang, C. Hao, Z. Zhao, J. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J. 6, 1–7 (2014)Google Scholar
  52. 52.
    Y. Al-Qazwini, A. Noor, Z. Al-Qazwini, M.H. Yaacob, S. Harun, M. Mahdi, Refractive index sensor based on SPR in symmetrically etched plastic optical fibers. Sens. Actuators A 246, 163–169 (2016)CrossRefGoogle Scholar
  53. 53.
    T. Takeo, H. Hattori, Optical fiber sensor for measuring refractive index. Jpn. J. Appl. Phys. 21, 1509 (1982)CrossRefGoogle Scholar
  54. 54.
    K. Cooper, J. Elster, M. Jones, R. Kelly, Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft, in 2001 IEEE Systems Readiness Technology Conference on AUTOTESTCON Proceedings (2001), pp. 847–856.Google Scholar
  55. 55.
    K.T. Wan, C.K. Leung, Durability tests of a fiber optic corrosion sensor. Sensors 12, 3656–3668 (2012)CrossRefGoogle Scholar
  56. 56.
    L. Alwis, T. Sun, K. Grattan, Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement 46, 4052–4074 (2013)CrossRefGoogle Scholar
  57. 57.
    C. Bariain, I.R. Matı́as, F.J. Arregui, M. López-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens. Actuators B Chem. 69, 127–131 (2000)CrossRefGoogle Scholar
  58. 58.
    D. Bykov, O. Schmidt, T. Euser, P.S.J. Russell, Flying particle sensors in hollow-core photonic crystal fibre. Nat. Photonics 9, 461 (2015)CrossRefGoogle Scholar
  59. 59.
    Y. Wang, N. Li, X. Huang, M. Wang, Fiber optic transverse load sensor based on polarization properties of π-phase-shifted fiber Bragg grating. Opt. Commun. 342, 152–156 (2015)CrossRefGoogle Scholar
  60. 60.
    M.S. Islam, B.K. Paul, K. Ahmed, S. Asaduzzaman, M.I. Islam, S. Chowdhury et al., Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis. Alexandria Eng. J. (2017)Google Scholar
  61. 61.
    K. Ahmed, M.S. Islam, B.K. Paul, Design and numerical analysis: effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications. Karbala Int. J. Mod. Sci. 3, 29–38 (2017)CrossRefGoogle Scholar
  62. 62.
    W.L. Ng, A.A. Rifat, W.R. Wong, D.C. Tee, F.R. Mahamd Adikan, Enhancement of evanescent field exposure in a photonic crystal fibre with interstitial holes. J. Mod. Opt. 64, 1544–1549 (2017)CrossRefGoogle Scholar
  63. 63.
    A.A. Rifat, R. Ahmed, G.A. Mahdiraji, F.M. Adikan, highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens. J. 17, 2776–2783 (2017)CrossRefGoogle Scholar
  64. 64.
    M. De, R.K. Gangwar, V.K. Singh, Designing of highly birefringence, dispersion shifted decagonal photonic crystal fiber with low confinement loss. Photonics Nanostruct. Fundam. Appl. 26, 15–23 (2017)CrossRefGoogle Scholar
  65. 65.
    L. Xin, L. Ying, X. Guo, Modular interference characteristics and beat length of a two-hole photonic crystal fiber, in International Symposium on Optoelectronic Technology and Application 2016 (2016), pp. 101550T–101550T-7Google Scholar
  66. 66.
    M.R. Hasan, M.A. Islam, A.A. Rifat, A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J. Eur. Opt. Soc. Rapid Publ. 12, 15 (2016)CrossRefGoogle Scholar
  67. 67.
    S.K. Mishra, S. Rani, B.D. Gupta, Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film. Sens. Actuators B Chem. 195, 215–222 (2014)CrossRefGoogle Scholar
  68. 68.
    S.K. Mishra, S. Bhardwaj, B.D. Gupta, Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15, 1235–1239 (2015)CrossRefGoogle Scholar
  69. 69.
    S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed, Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing, in 2015 18th International Conference on Computer and Information Technology (ICCIT) (2015), pp. 127–131Google Scholar
  70. 70.
    M. Morshed, S. Asaduzzaman, M.F.H. Arif, K. Ahmed, Proposal of simple gas sensor based on micro structure optical fiber in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (2015), pp. 1–5Google Scholar
  71. 71.
    S. Das, V. Jayaraman, SnO 2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRefGoogle Scholar
  72. 72.
    S. Asaduzzaman, K. Ahmed, B.K. Paul, Slotted-core photonic crystal fiber in gas-sensing application, in SPIE/COS Photonics Asia (2016), pp. 100250O–100250O-9Google Scholar
  73. 73.
    S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar, Highly sensitive simple structure circular photonic crystal fiber based chemical sensor, in 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (2015), pp. 151–154Google Scholar
  74. 74.
    S. Asaduzzaman, K. Ahmed, M.F.H. Arif, M. Morshed, Application of microarray-core based modified photonic crystal fiber in chemical sensing, in 2015 International Conference on Electrical & Electronic Engineering (ICEEE) (2015), pp. 41–44Google Scholar
  75. 75.
    J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)MathSciNetCrossRefGoogle Scholar
  76. 76.
    T. Uno, Y. He, S. Adachi, Perfectly matched layer absorbing boundary condition for dispersive medium. IEEE Microwave Guided Wave Lett. 7, 264–266 (1997)CrossRefGoogle Scholar
  77. 77.
    B.K. Paul, K. Ahmed, S. Asaduzzaman, M.S. Islam, Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens. Bio-Sens. Res. 12, 36–42 (2017)CrossRefGoogle Scholar
  78. 78.
    K. Ahmed, I. Islam, B.K. Paul, S. Islam, S. Sen, S. Chowdhury et al., Effect of photonic crystal fiber background materials in sensing and communication applications. Mat. Discov. (2017)CrossRefGoogle Scholar
  79. 79.
    G. Amouzad Mahdiraji, D.M. Chow, S. Sandoghchi, F. Amirkhan, E. Dermosesian, K.S. Yeo et al., Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr. Opt. 33, 85–104 (2014)CrossRefGoogle Scholar
  80. 80.
    R.T. Bise, D. Trevor, Solgel-derived microstructured fibers: fabrication and characterization, in Optical Fiber Communication Conference (2005), p. OWL6Google Scholar
  81. 81.
    H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Boukenter et al., Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express 20, 29751–29760 (2012)CrossRefGoogle Scholar
  82. 82.
    H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R.C. Moore, K. Frampton et al., Bismuth glass holey fibers with high nonlinearity. Opt. Express 12, 5082–5087 (2004)CrossRefGoogle Scholar
  83. 83.
    J. Knight, T. Birks, P.S.J. Russell, D. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ahmmed A. Rifat
    • 1
  • Kawsar Ahmed
    • 2
  • Sayed Asaduzzaman
    • 3
  • Bikash Kumar Paul
    • 3
  • Rajib Ahmed
    • 4
  1. 1.Nonlinear Physics Centre, Research School of Physics & EngineeringAustralian National UniversityActon, ActAustralia
  2. 2.Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversitySantosh, TangailBangladesh
  3. 3.Department of Software EngineeringDaffodil International UniversitySukrabadBangladesh
  4. 4.Nanotechnology Laboratory, School of EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations