Advertisement

Introduction to Optical Waveguides

  • Essam M. A. Elkaramany
  • Mohamed Farhat O. Hameed
  • S. S. A. Obayya
Chapter

Abstract

This chapter presents an introduction to the optical waveguides including planar and nonplanar structures. Additionally, an analysis of planner waveguides based on ray-optical approach and Maxwell’s equations approach is investigated. In this context, types of modes, dispersion, cutoff frequency, and effective thickness of the optical waveguides are discussed thoroughly. Further, the different numerical techniques and their based mode solvers which are used to analyze optical waveguides are summarized in brief. Finally, the coupling mechanisms to the optical waveguide are introduced including transversal coupling techniques and the longitudinal coupling techniques.

Keywords

Optical waveguides Dispersion curves Coupling techniques Numerical techniques 

References

  1. 1.
    Publication number: US624392A, Publication type: Grant, Publication date: May 2, 1899, Filing date: Apr 25, 1898, Inventors: David D. SmithGoogle Scholar
  2. 2.
    H.H. Hopkins, N.S. Kapany, A flexible fiberscope using static scanning. Nature 1954(173), 39–41 (1954)CrossRefGoogle Scholar
  3. 3.
    K.C. Kao, G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies. Proc. IEE. 113(7), 1151–1158 (1966)Google Scholar
  4. 4.
    F.P. Kapron, D.B. Keck, R.D. Maurer, Radiation losses in glass optical waveguides. Appl. Phys. Lett. 17, 423–425 (1970)CrossRefGoogle Scholar
  5. 5.
    M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. IEEE J. Lightwave Technol. 27(21), 4754–4762 (2009)CrossRefGoogle Scholar
  6. 6.
    M.F.O. Hameed, S.S.A. Obayya, Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber. IEEE J. Quant. Electron. 47(10), 1283–1290 (2011)CrossRefGoogle Scholar
  7. 7.
    S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications, Wiley, April 2016CrossRefGoogle Scholar
  8. 8.
    M.F.O. Hameed, A.M. Heikal, S.S.A. Obayya, Novel passive polarization rotator based on spiral photonic crystal fiber. IEEE Photon. Technol. Lett. 25(16), 1578, 1581 (2013)CrossRefGoogle Scholar
  9. 9.
    M.F.O. Hameed, S.S.A. Obayya, H.A. El-Mikati, Passive polarization converters based on photonic crystal fiber with L-shaped core region. IEEE J. Lightwave Technol. 30(3), 283–289 (2012)CrossRefGoogle Scholar
  10. 10.
    M.F.O. Hameed, Maher Abdelrazzak, S.S.A. Obayya, Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter. IEEE J. Lightwave Technol. 31(1), 81–86 (2013). January 1CrossRefGoogle Scholar
  11. 11.
    Rasha A. H. Ali, M.F.O. Hameed, S.S.A. Obayya, Ultra-compact polarization splitter based on silica photonic liquid crystal fiber. J. Appl. Computat. Electromagnet. Soc. 30(6), 599–607 (2015)Google Scholar
  12. 12.
    S. Azzam, M.F.O. Hameed, N. Fayez, S.S.A. Obayya, H. Elmikati, M. Abd-Elrazzak, Proposal of ultracompact CMOS compatible TE-/TM- Pass polarizer based on SOI platform. IEEE Photon. Technol. Lett. 26(16), 1633–1636 (2014)CrossRefGoogle Scholar
  13. 13.
    M. El-Azab, M.F.O. Hameed, S.M. El-Hefnawy, S.S.A. Obayya, Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer. IET J. Optoelectron. 10(1), 21–27 (2016).  https://doi.org/10.1049/iet-opt.2015.0009CrossRefGoogle Scholar
  14. 14.
    M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer-demultiplexer. Photon. J. IEEE 7(5), 1–10 (2015)CrossRefGoogle Scholar
  15. 15.
    M.F.O. Hameed, M. El-Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photon. Technol. Lett. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6828(1), pp. 59–62 (2015)CrossRefGoogle Scholar
  16. 16.
    Shaimaa I. Azzam, Rania Eid A. Shehata, Mohamed Farhat O. Hameed, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. J. Optic. Quant. Electron. 48, 142 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Lifante, Integrated Photonics Fundamentals (Wiley, Hoboken, 2003)CrossRefGoogle Scholar
  18. 18.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2001)zbMATHGoogle Scholar
  19. 19.
    A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  20. 20.
    M. Born, E. Wolf, Principles of Optics 7th edn. (Cambridge University Press, 1999)Google Scholar
  21. 21.
    A. Boudrioua, Photonic Waveguides: Theory and Applications, ISTE Ltd and Wiley (2009)Google Scholar
  22. 22.
    A. Yariv, Coupled-mode theory for guided wave optics. IEEE J. Quant. Electron. 9(9), 919–933 (1973)CrossRefGoogle Scholar
  23. 23.
    B. Vincent, Conversion de frequencies dans les guides d’ondesfabriqués par implantation ioniquedans les cristauxpériodiquementpolarises, PhD Thesis, University of Metz (2003)Google Scholar
  24. 24.
    R.G. Hunsperger, Integrated Optic: Theory and Technology, 2nd ed. (Springer, 1985)Google Scholar
  25. 25.
    M. Koshiba, H. Saitoh, M. Eguchi, K. Hirayama, Simple scalar finite element approach to optical waveguides. lEE Proc. 1 139, 166–171 (1992)Google Scholar
  26. 26.
    M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific Publishers and Kluwer Academic Publishers, Dordrecht, Holland, 1992)CrossRefGoogle Scholar
  27. 27.
    F.A. Fernandez, Y. Lu, Microwave and optical waveguide analysis by the finite element method, in Electronic and Electrical Engineering Research Studies Optoelectronics Series (Wiley 1996)Google Scholar
  28. 28.
    S. Johnson, J. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Expr. 8, 173 (2001)CrossRefGoogle Scholar
  29. 29.
    A. Ghatak et al., Numerical analysis of planar optical waveguides using matrix approach. J. Lightwave Technol. 5, 660 (1987)CrossRefGoogle Scholar
  30. 30.
    L. Thyelen, The beam propagation method: an analysis of its applicability. Opt. Quant. Electron. 15, 433 (1983)CrossRefGoogle Scholar
  31. 31.
    D. Yevick, B. Hermansson, Efficient beam propagation techniques. IEEE J. Quant. Elect. 26, 109 (1990)CrossRefGoogle Scholar
  32. 32.
    D. Yevick, B. Hermansson, Efficient beam propagation techniques. IEEE J. Quant. Electron. 26, 109 (1990)CrossRefGoogle Scholar
  33. 33.
    Y. Chung, N. Dagle, Assessment of finite difference beam propagation. IEEE J. Quant. Elect. 26, 1335 (1990)CrossRefGoogle Scholar
  34. 34.
    T. Koch, J. Davies, D. Wickramasinghe, Finite element/finite difference propagation algorithm for integrated optical devices. Electr. Lett. 25, 514 (1989)CrossRefGoogle Scholar
  35. 35.
    M. Koshiba, Y. Tsuji, Design and modeling of microwave photonic devices. Opt. Quant. Electron. 30, 995 (1998)CrossRefGoogle Scholar
  36. 36.
    A. Taflove, S. Hagness, Computational electrodynamics, in The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, 2005)Google Scholar
  37. 37.
    G.Y. Wang, E. Garmire, Efficient coupling into tapered proton-exchanged LiNbO3 waveguides fabricated by vertically controlled immersion. Opt. Lett. 21, 42–45 (1996)CrossRefGoogle Scholar
  38. 38.
    P.K. Tien, R.J. Martin, Experiments in light waves in a thin, tapered film and a new light wave coupler. Appl. Phys. Lett. 18, 398–401 (1971)CrossRefGoogle Scholar
  39. 39.
    P.K. Tien, R. Ulrich, R.J. Martin, Modes of propagating light waves in thin deposited semiconductor films. Appl. Phys. Lett. 14, 291–294 (1969)CrossRefGoogle Scholar
  40. 40.
    M.L. Dakss, L. Kuhn, P.F. Heidrich, B.A. Scott, Grating couplers for efficient excitation of optical guided waves in thin films. Appl. Phys. Lett. 16, 523–525 (1970)CrossRefGoogle Scholar
  41. 41.
    R. Petit, Electromagnetic Theory of Gratings, Springer (1980)Google Scholar
  42. 42.
    Planar Waveguides of Y2O3, Y2O3: Tb3+ and YAG Prepared by sol-gel: Analysis, Structure and Optical. PhD dissertation, Claude Bernard University, LyonGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Essam M. A. Elkaramany
    • 1
  • Mohamed Farhat O. Hameed
    • 2
    • 3
  • S. S. A. Obayya
    • 4
    • 5
  1. 1.Engineering Mathematics and Physics Department, Faculty of EngineeringCairo UniversityGizaEgypt
  2. 2.Center for Photonics and Smart Materials and Nanotechnology Engineering ProgramZewail City of Science and TechnologyGizaEgypt
  3. 3.Mathematics and Engineering Physics Department, Faculty of EngineeringMansoura UniversityMansouraEgypt
  4. 4.Centre for Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  5. 5.Electronics and Communication Engineering Department, Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations