Skip to main content

Revisiting the Privacy Implications of Two-Way Internet Latency Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10771))

Abstract

The Internet measurement community is increasingly sensitive to the privacy implications of both active and passive measurement. Research into the drawbacks of network data anonymization has led the community to investigate data sharing techniques, as well as to focus on active measurements and active measurement datasets. A key metric in these datasets is round-trip-time (RTT) as measured e.g. by ping or traceroute. This paper examines the assumption that the analysis of Internet RTT data is safe for open research by posing the question: what potentually-private inferences can be made about a remote target given periodic latency measurements from known vantage points under one’s control? We explore the risks to end-user privacy both through a review of diverse literature touching on the subject as well as on the analysis of RTT data from fixed and mobile Internet measurement infrastruture. While we find that the common assumption of safety generally holds, we explore caveats and give recommendations for mitigation in those cases where it may not.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    e.g. the European General Data Protection Regulation (GDPR); see http://www.eugdpr.org.

  2. 2.

    https://atlas.ripe.net.

  3. 3.

    https://github.com/mami-project/rtt-privacy-paper.

  4. 4.

    Here, the reasoning is that such pairs are either colocated in the same rack, or possible connected to the same local- or metropolitan-area network, and as such do not accurately reflect Internet RTT measurement.

  5. 5.

    As retrieved from https://stat.ripe.net on 10 October 2017.

  6. 6.

    MONROE nodes provide GPS metadata for mobile nodes for location ground truth. We split MONROE data from 1 September 2017 into 5 min bins (300 pings) and associated the geographic average GPS location with the minimum RTT in each bin to yield 3,863 samples from 45 nodes.

  7. 7.

    https://pingme.pto.mami-project.eu.

References

  1. Moore, D., Claffy, K.C: Summary of anonymization best practice techniques, December 2008. https://www.caida.org/projects/predict/anonymization/

  2. Burkhart, M., Schatzmann, D., Trammell, B., Boschi, E., Plattner, B.: The role of network trace anonymization under attack. SIGCOMM Comput. Commun. Rev. 40(1), 5–11 (2010)

    Article  Google Scholar 

  3. Coull, S., Wright, C., Monrose, F., Collins, M., Reiter, M.: Playing devil’s advocate: inferring sensitive information from anonymized network traces. In: Proceedings of the 14th Annual Network and Distributed Systems Security Symposium, San Diego, CA, USA (2007)

    Google Scholar 

  4. Barnes, R., Schneier, B., Jennings, C., Hardie, T., Trammell, B., Huitema, C., Borkmann, D.: Confidentiality in the face of pervasive surveillance: a threat model and problem statement. RFC 7624, RFC Editor, August 2015

    Google Scholar 

  5. Partridge, C., Allman, M.: Ethical considerations in network measurement papers. Commun. ACM 59(10), 58–64 (2016)

    Article  Google Scholar 

  6. Strowes, S.D.: Passively measuring TCP round-trip times. Commun. ACM 56(10), 57–64 (2013)

    Article  Google Scholar 

  7. Allman, M., Beverly, R., Trammell, B.: Principles for measurability in protocol design. SIGCOMM Comput. Commun. Rev. 47(2), 2–12 (2017)

    Article  Google Scholar 

  8. Ding, H., Rabinovich, M.: TCP stretch acknowledgements and timestamps: findings and implications for passive RTT measurement. SIGCOMM Comput. Commun. Rev. 45(3), 20–27 (2015)

    Article  Google Scholar 

  9. Cicalese, D., Joumblatt, D.Z., Rossi, D., Buob, M.O., Augé, J., Friedman, T.: Latency-based anycast geolocation: algorithms, software, and data sets. IEEE J. Sel. Areas Commun. 34(6), 1889–1903 (2016)

    Article  Google Scholar 

  10. Grey, M., Schatz, D., Rossberg, M., Schaefer, G.: Towards distributed geolocation by employing a delay-based optimization scheme. In: 2014 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7, June 2014

    Google Scholar 

  11. Hillmann, P., Stiemert, L., Rodosek, G.D., Rose, O.: Dragoon: advanced modelling of IP geolocation by use of latency measurements. In: 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 438–445, December 2015

    Google Scholar 

  12. Wang, Z., Mark, B.L.: Robust statistical geolocation of Internet hosts. In: 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, December 2015

    Google Scholar 

  13. Abdou, A., Matrawy, A., van Oorschot, P.C.: CPV: delay-based location verification for the internet. IEEE Trans. Dependable Secure Comput. 14(2), 130–144 (2017)

    Article  Google Scholar 

  14. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T., Chawathe, Y.: Towards IP geolocation using delay and topology measurements. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC 2006, pp. 71–84. ACM, New York (2006)

    Google Scholar 

  15. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of internet hosts. IEEE/ACM Trans. Networking 14(6), 1219–1232 (2006)

    Article  Google Scholar 

  16. Francis, P., Jamin, S., Jin, C., Jin, Y., Paxson, V., Raz, D., Shavitt, Y., Zhang, L.: IDMaps: a global Internet host distance estimation service. In: Proceedings of IEEE INFOCOM, pp. 210–217 (2000)

    Google Scholar 

  17. Padmanabhan, V.N., Subramanian, L.: An investigation of geographic mapping techniques for internet hosts. SIGCOMM Comput. Commun. Rev. 31(4), 173–185 (2001)

    Article  Google Scholar 

  18. Laki, S., Mátray, P., Hága, P., Csabai, I., Vattay, G.: A model based approach for improving router geolocation. Comput. Netw. 54(9), 1490–1501 (2010)

    Article  MATH  Google Scholar 

  19. Wong, B., Stoyanov, I., Sirer, E.G.: Geolocalization on the internet through constraint satisfaction. In: Proceedings of the 3rd Conference on USENIX Workshop on Real, Large Distributed Systems, WORLDS 2006, vol. 3, p. 1. USENIX Association, Berkeley,(2006)

    Google Scholar 

  20. Dong, Z., Perera, R.D., Chandramouli, R., Subbalakshmi, K.: Network measurement based modeling and optimization for IP geolocation. Comput. Netw. 56(1), 85–98 (2012)

    Article  Google Scholar 

  21. Ciavarrini, G., Luconi, V., Vecchio, A.: Smartphone-based geolocation of internet hosts. Comput. Netw. 116(Supplement C), 22–32 (2017)

    Article  Google Scholar 

  22. Ng, T.S.E., Zhang, H.: Global network positioning: a new approach to network distance prediction. SIGCOMM Comput. Commun. Rev. 32(1), 73–73 (2002)

    Article  Google Scholar 

  23. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coordinate system. SIGCOMM Comput. Commun. Rev. 34(4), 15–26 (2004)

    Article  Google Scholar 

  24. Chen, Y., Xiong, Y., Shi, X., Deng, B., Li, X.: Pharos: a decentralized and hierarchical network coordinate system for Internet distance prediction. In: IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, pp. 421–426, November 2007

    Google Scholar 

  25. Lim, H., Hou, J.C., Choi, C.H.: Constructing internet coordinate system based on delay measurement. IEEE/ACM Trans. Networking 13(3), 513–525 (2005)

    Article  Google Scholar 

  26. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: Proceedings, Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1190–1199 (2002)

    Google Scholar 

  27. Ries, T., State, R., Engel, T.: Measuring anonymity using network coordinate systems. In: 2011 11th International Symposium on Communications Information Technologies (ISCIT), pp. 366–371, October 2011

    Google Scholar 

  28. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network latency leak? ACM Trans. Inf. Syst. Secur. 13(2), 13:1–13:28 (2010)

    Article  Google Scholar 

  29. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 116–131. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39650-5_7

    Chapter  Google Scholar 

  30. Murdoch, S.J.: Hot or not: revealing hidden services by their clock skew. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 27–36. ACM, New York (2006)

    Google Scholar 

  31. Alay, O., Lutu, A., Garcia, R., Peon-Quiros, M., Mancuso, V., Hirsch, T., Dely, T., Werme, J., Evensen, K., Hansen, A., Alfredsson, S., Karlsson, J., Brunstrom, A., Khatouni, A.S., Mellia, M., Marsan, M.A., Monno, R., Lonsethagen, H.: Measuring and assessing mobile broadband networks with MONROE. In: 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–3, June 2016

    Google Scholar 

  32. Gharaibeh, M., Shah, A., Huffaker, B., Zhang, H., Ensafi, R., Papadopoulos, C.: A look at router geolocation in public and commercial databases. In: Internet Measurement Conference (IMC), November 2017

    Google Scholar 

  33. Bajpai, V., Eravuchira, S.J., Schönwälder, J.: Dissecting last-mile latency characteristics. SIGCOMM Comput. Commun. Rev. 47(5), 25–34 (2017)

    Article  Google Scholar 

  34. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy of a large European IXP. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. SIGCOMM 2012, pp. 163–174. ACM, Helsinki (2012)

    Google Scholar 

  35. Kreibich, C., Weaver, N., Nechaev, B., Paxson, V.: Netalyzr: illuminating the edge network. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC 2010, Melbourne, Australia, pp. 246–259 (2010)

    Google Scholar 

  36. Luckie, M., Dhamdhere, A., Clark, D., Huffaker, B., claffy, k.: Challenges in inferring Internet interdomain congestion. In: Proceedings of the 2014 Conference on Internet Measurement Conference, IMC 2014, Vancouver, BC, Canada, pp. 15–22 (2014)

    Google Scholar 

  37. Holterbach, T., Pelsser, C., Bush, R., Vanbever, L.: Quantifying interference between measurements on the RIPE Atlas platform. In: Proceedings of the 2015 Internet Measurement Conference, IMC 2015, Tokyo, Japan, pp. 437–443. ACM (2015)

    Google Scholar 

  38. Gettys, J., Nichols, K.: Bufferbloat: dark buffers in the internet. Queue 9(11), 40:40–40:54 (2011)

    Article  Google Scholar 

  39. Lutu, A., Bagnulo, M., Dhamdhere, A., Claffy, K.C.: NAT revelio: detecting NAT444 in the ISP. In: Karagiannis, T., Dimitropoulos, X. (eds.) PAM 2016. LNCS, vol. 9631, pp. 149–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30505-9_12

    Chapter  Google Scholar 

Download references

Acknowledgments

Many thanks to RIPE for making Atlas available to the research community, and to the MONROE project for access to the mobile dataset used in this work. Thanks to the anonymous reviewers and our shepherd, Ramakrishna Padmanabhan, for comments improving the organization and focus of this paper. Thanks also to the members of the IETF QUIC Working Group RTT Design Team for the discussions leading to this paper. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 688421, and was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0268. The opinions expressed and arguments employed reflect only the authors’ views, and not those of the European Commission or the Swiss Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Trammell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trammell, B., Kühlewind, M. (2018). Revisiting the Privacy Implications of Two-Way Internet Latency Data. In: Beverly, R., Smaragdakis, G., Feldmann, A. (eds) Passive and Active Measurement. PAM 2018. Lecture Notes in Computer Science(), vol 10771. Springer, Cham. https://doi.org/10.1007/978-3-319-76481-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76481-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76480-1

  • Online ISBN: 978-3-319-76481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics