Advertisement

Complementary Fuzzy Incidence Graphs

  • John N. Mordeson
  • Sunil Mathew
  • Davender S. Malik
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 365)

Abstract

Recall that if x is a member of a set X and \(t\in [0,1],\) then we define the fuzzy subset \(x_{t}\) of X by \(x_{t}(x)=t\) and \(x_{t}(y)=0\) for all \(y\in X\backslash \{x\}.\) We call \(x_{t}\) a fuzzy singleton

References

  1. 1.
    K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefMATHGoogle Scholar
  2. 2.
    K.T. Atanassov, On intuitionistic fuzzy graphs and intuitionistic fuzzy relations, in Proceedings of the 6th IFSA World Congress, vol 1 (San Paulo, Brazil, 1995), pp. 551–554Google Scholar
  3. 3.
    K.T. Atanassov, A. Shannon, On a generalization of intuitionistic fuzzy graphs. Notes Intuit. Fuzzy Sets 12, 24–29 (2006)Google Scholar
  4. 4.
    K.R. Bhutani, J.N. Mordeson, A. Rosenfeld, On degrees of end nodes and cut nodes in fuzzy graphs. Iran. J. Fuzzy Syst. 1, 57–64 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    K.R. Bhutani, J.N. Mordeson, P.K. Saha, \((s,t]\) -fuzzy graphs, in JCIS, Proceedings (2005), pp. 37–40Google Scholar
  6. 6.
    K.R. Bhutani, A. Rosenfeld, Fuzzy end nodes in fuzzy graphs. Inf. Sci. 152, 323–326 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    E.Darabian, R.A. Borzooei, Results on vague graphs with applications in human trafficking. New Math. Nat. Comput. to appearGoogle Scholar
  8. 8.
    T. Dinesh, A study on graph structures, incidence algebras and their fuzzy analogues, Ph.D. Thesis, Kummar University, (Kerala, India, 2012)Google Scholar
  9. 9.
    T. Dinesh, Fuzzy incidence graph - an introduction. Adv. Fuzzy Sets Syst. 21(1), 33–48 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D.S. Malik, S. Mathew, J.N. Mordeson, Fuzzy Incidence Graphs: Applications to Human Trafficking, submittedGoogle Scholar
  11. 11.
    J.N. Mordeson, Fuzzy incidence graphs. Adv. Fuzzy Sets Syst. 21(2), 1–13 (2016)MathSciNetMATHGoogle Scholar
  12. 12.
    J.N. Mordeson, S. Mathew, A. Borzooei, Vulnerability and Government Response to Human Trafficking: Vague Fuzzy Incidence Graphs, SubmittedGoogle Scholar
  13. 13.
    J.N. Mordeson, D.S. Malik, C.S. Richards, J.A. Trebbian, M.A. Boyce, M.P. Byrne, B.J. Cousino, Fuzzy graphs and complentary fuzzy graphs. J. Fuzzy Math. 24, 271–288 (2016)MATHGoogle Scholar
  14. 14.
    J.N. Mordeson, S. Mathew, \((s, t]\)-fuzzy incidence graphs. J. Fuzzy Math. 25, 723–734 (2017)Google Scholar
  15. 15.
    Central Intelligence Agency, Field Listing: Trafficking in Persons (2014). http://www.cia.gov/library/publications/the-world-factbook/fields/2196.html
  16. 16.
    Global Slavery Index (2016). http://www.globalslaveryindex.org/findings
  17. 17.
    Routes to the US: Mapping Human Smuggling Networks. http://www.insightcrime.org/news-analysis/routes-to-us-mapping
  18. 18.
    Trafficking in Persons, Global Patterns (Appendices-United Nations Office on Drugs and Crime, Citation Index, 2006)Google Scholar
  19. 19.
    U.S. Department of State, Diplomacy in Action, Trafficking in Persons Report 2013: Tier Placements. http://www.state.gov/j/rls/tiprpt/2013/210548.htm

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • John N. Mordeson
    • 1
  • Sunil Mathew
    • 2
  • Davender S. Malik
    • 1
  1. 1.Department of MathematicsCreighton UniversityOmahaUSA
  2. 2.Department of MathematicsNational Institute of TechnologyCalicutIndia

Personalised recommendations