• John N. Mordeson
  • Sunil Mathew
  • Davender S. Malik
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 365)


In the first three sections, we devote our attention to the problem of maximizing the flow through a network. We present a fuzzy version of a max flow, min cut theorem.


  1. 1.
    R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice Hall, New Jersey, 1993)MATHGoogle Scholar
  2. 2.
    J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, 5th edn. (Macmillan Press, New York, 1982)MATHGoogle Scholar
  3. 3.
    H. Bustince, E. Barrenechea, J. Fernandez, M. Pagola, J. Montero, C. Guerra, Contrast of a fuzzy relation. Inf. Sci. 180, 1326–1344 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M.H. Dahshan, Maximum bandwidth node disjoint paths. Int. J. Adv. Comput. Sci. Appl. 3(3), 48–56 (2012)Google Scholar
  5. 5.
    H.N. Gabow, R.E. Tarjan, Algorithms for two bottleneck optimization problems. J. Algorithms 9, 411–417 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    F. Harary, Graph Theory (Addison-Wesley, New York, 1973)MATHGoogle Scholar
  7. 7.
    R. Johnsonbaugh, Discrete Mathematics (MacMillan, New York, 1984)MATHGoogle Scholar
  8. 8.
    S. Mathew, J.N. Mordeson, Directed fuzzy networks as a model to illicit flows. New Math. Nat. Comput. 13, 219–229 (2017)Google Scholar
  9. 9.
    S. Mathew, M.S. Sunitha, Node connectivity and arc connectivity of a fuzzy graph. Inf. Sci. 180, 519–531 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    K. Menger, Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115 (1927)CrossRefMATHGoogle Scholar
  11. 11.
    J.N. Mordeson, P.S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs (Physica-Verlag, New York, 2000)CrossRefMATHGoogle Scholar
  12. 12.
    A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, ed. by L.A. Zadeh, K.S. Fu, K. Tanaka, M. Shimura (Academic Press, Dublin, 1975), pp. 77–95CrossRefGoogle Scholar
  13. 13.
    A. Shapira, R. Yuster, U. Zwick, All-pairs bottleneck paths in vertex weighted graphs, Proc. SODA 978-985 (2007)Google Scholar
  14. 14.
    United Nations Office on Drugs and Crime (UNODC) Trafficking in Persons Global Patterns, April 2006Google Scholar
  15. 15.
    R.T. Yeh, S.Y. Bang, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in Fuzzy Sets and Their Applications, ed. by L.A. Zadeh, K.S. Fu, M. Shimura (Academic Press, Dublin, 1975), pp. 125–149Google Scholar
  16. 16.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar
  17. 17.
    L.A. Zadeh, Is there a need for fuzzy logic? Inf. Sci. 178, 2751–2779 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • John N. Mordeson
    • 1
  • Sunil Mathew
    • 2
  • Davender S. Malik
    • 1
  1. 1.Department of MathematicsCreighton UniversityOmahaUSA
  2. 2.Department of MathematicsNational Institute of TechnologyCalicutIndia

Personalised recommendations