Advertisement

Integers

  • Lloyd Allison
Chapter

Abstract

This chapter concerns models of integers , \( \mathbb {Z} = \{ \ldots , -1, 0, 1, 2, \ldots \} \), most often of non-negative (\( \mathbb {Z}_{\ge 0} \)) or positive (\( \mathbb {Z}_{> 0} \)) integers.

References

  1. 13.
    G.E.P. Box, Robustness in the strategy of scientific model building. Robustness Stat. 1, 201–236 (1979). https://doi.org/10.1016/B978-0-12-438150-6.50018-2. Includes, “All models are wrong but some are useful”
  2. 26.
    P. Elias, Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory IT-21(2), 194–203 (1975).  https://doi.org/10.1109/TIT.1975.1055349 MathSciNetCrossRefGoogle Scholar
  3. 71.
    J. Rissanen, A universal prior for integers and estimation by minimum description length. Ann. Stat. 11(2), 416–431 (1983). http://www.jstor.org/stable/2240558 MathSciNetCrossRefGoogle Scholar
  4. 73.
    D.F. Schmidt, E. Makalic, MMLD inference of the Poisson and geometric models. Technical report 2008/220, Faculty of Information Technology, Monash University, 2008. https://www.researchgate.net/publication/268057041_MMLD_Inference_of_the_Poisson_and_Geometric_Models
  5. 98.
    C.S. Wallace, J.D. Patrick, Coding decision trees. Mach. Learn. 11(1), 7–22 (1993). https://doi.org/10.1023/A:1022646101185 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lloyd Allison
    • 1
  1. 1.Faculty of Information TechnologyMonash UniversityMelbourneAustralia

Personalised recommendations