Advertisement

Linear Regression

  • Lloyd Allison
Chapter

Abstract

A linear regression is a form of function-model (Chaps.  5,  8) between continuous variables. An output (dependent) variable y is approximated by a function f(x) of an input (independent) variable x with the error, y − f(x), being modelled by a model of continuous data (Chap.  4), most commonly by the Normal distribution (Sect.  4.3).

References

  1. 4.
    E. Anderson, The Irises of the Gaspe Peninsula. Bull. Am. Iris Soc. 59, 2–5 (1935)Google Scholar
  2. 5.
    E. Anderson, The species problem in Iris. Ann. Mo. Bot. Gard. 23, 457–509 (1936). https://doi.org/10.2307/2394164 CrossRefGoogle Scholar
  3. 30.
    R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(II), 179–188 (1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x CrossRefGoogle Scholar
  4. 90.
    C.S. Wallace, Multiple factor analysis by MML estimation. Technical report 218, Department of Computer Science, Monash University, 1998. http://www.allisons.org/ll/Images/People/Wallace/Multi-Factor/
  5. 97.
    C.S. Wallace, P.R. Freeman, Single-factor analysis by minimum message length estimation. J. R. Stat. Soc. Ser. B Methodol. 195–209 (1992). http://www.jstor.org/stable/2345956

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lloyd Allison
    • 1
  1. 1.Faculty of Information TechnologyMonash UniversityMelbourneAustralia

Personalised recommendations