Advertisement

Introduction

  • Lloyd Allison
Chapter

Abstract

This book is about inductive inference using the minimum message length (MML) principle and a computer. It is accompanied by a library of software to help an applications programmer, student or researcher in the fields of data analysis or machine learning to write computer programs of this kind.

References

  1. 8.
    T. Bayes, An essay towards solving a problem in the doctrine of chances. Philos. Trans. 370–418 (1763). http://www.jstor.org/stable/2333180
  2. 12.
    D.M. Boulton, C.S. Wallace, The information content of a multistate distribution. J. Theor. Biol. 23(2), 269–278 (1969). https://doi.org/10.1016/0022-5193(69)90041-1 MathSciNetCrossRefGoogle Scholar
  3. 13.
    G.E.P. Box, Robustness in the strategy of scientific model building. Robustness Stat. 1, 201–236 (1979). https://doi.org/10.1016/B978-0-12-438150-6.50018-2. Includes, “All models are wrong but some are useful”
  4. 19.
    J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups (Springer, Berlin, 1988). ISBN 978-0387966175. https://doi.org/10.1007/978-1-4757-6568-7 CrossRefGoogle Scholar
  5. 22.
    H.A. David, First (?) occurrence of common terms in mathematical statistics. Am. Stat. 49(2), 121–133 (1995). https://doi.org/10.2307/2684625. http://www.jstor.org/stable/2684625 MathSciNetGoogle Scholar
  6. 28.
    G.E. Farr, C.S. Wallace, The complexity of strict minimum message length inference. Comput. J. 45(3), 285–292 (2002).  https://doi.org/10.1093/comjnl/45.3.285 CrossRefGoogle Scholar
  7. 31.
    R.A. Fisher, The negative binomial distribution. Ann. Eugenics 11(1), 182–187 (1941). https://doi.org/10.1111/j.1469-1809.1941.tb02284.x. David (First (?) occurrence of common terms in mathematical statistics. Am. Stat. 49(2), 121–133 (1995). https://doi.org/10.2307/2684625. http://www.jstor.org/stable/2684625) attributes the “first (?) occurrence” of the term “information matrix” to this paperMathSciNetCrossRefGoogle Scholar
  8. 35.
    J.-L. Gailly, M. Adler, gzip (2003). http://www.gzip.org/
  9. 51.
    S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951).  https://doi.org/10.1214/aoms/1177729694 MathSciNetCrossRefGoogle Scholar
  10. 52.
    P.S. Laplace, Mémoire sur la probabilité des causes par les évènemens (1774). https://projecteuclid.org/download/pdf_1/euclid.ss/1177013621. Translated by S. M. Stigler (1986) (Laplace’s 1774 memoir on inverse probability. Stat. Sci. 1(3), 359–363 (1986). https://projecteuclid.org/download/pdf_1/euclid.ss/1177013620)
  11. 58.
    G.R.G. Mure, Aristotle’s posterior analytics, in Aristotle Organon and Other Works, ed. by W.D. Ross (1925). https://archive.org/details/AristotleOrganon
  12. 64.
    R.C. Pasco, Source coding algorithms for fast data compression. PhD thesis, Stanford University CA, 1976Google Scholar
  13. 70.
    J. Rissanen, Generalized kraft inequality and arithmetic coding. IBM J. Res. Dev. 20(3), 198–203 (1976). https://doi.org/10.1147/rd.203.0198 MathSciNetCrossRefGoogle Scholar
  14. 76.
    C.E. Shannon, A mathematical theory of communication. Bell Labs Tech. J. 27(3,4), 379–423, 623–656 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x MathSciNetCrossRefGoogle Scholar
  15. 78.
    P.V. Spade (ed.), The Cambridge Companion to Ockham (Cambridge University Press, Cambridge, 1999). ISBN 978-0521582445.  https://doi.org/10.1017/CCOL052158244X zbMATHGoogle Scholar
  16. 81.
    S.M. Stigler, Laplace’s 1774 memoir on inverse probability. Stat. Sci. 1(3), 359–363 (1986). https://projecteuclid.org/download/pdf_1/euclid.ss/1177013620. Introduction to translation of Laplace (Mémoire sur la probabilité des causes par les évènemens (1774). https://projecteuclid.org/download/pdf_1/euclid.ss/1177013621. Translated by S. M. Stigler (1986) (Laplace’s 1774 memoir on inverse probability. Stat. Sci. 1(3), 359–363 (1986). https://projecteuclid.org/download/pdf_1/euclid.ss/1177013620)) pp.364–378 same issueMathSciNetCrossRefGoogle Scholar
  17. 92.
    C.S. Wallace, Statistical and Inductive Inference by Minimum Message Length (Springer, Berlin, 2005). ISBN 978-0-387-23795-4. https://doi.org/10.1007/0-387-27656-4 zbMATHGoogle Scholar
  18. 93.
    C.S. Wallace, D.M. Boulton, An information measure for classification. Comput. J. 11(2), 185–194 (1968).  https://doi.org/10.1093/comjnl/11.2.185 CrossRefGoogle Scholar
  19. 94.
    C.S. Wallace, D.M. Boulton, An invariant Bayes method for point estimation. Classif. Soc. Bull. 3(3), 11–34 (1975)Google Scholar
  20. 96.
    C.S. Wallace, P.R. Freeman, Estimation and inference by compact coding. J. R. Stat. Soc. Ser. B Methodol. 240–265 (1987). http://www.jstor.org/stable/2985992
  21. 103.
    P. Zador, Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inf. Theory 28(2), 139–149 (1982).  https://doi.org/10.1109/TIT.1982.1056490 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lloyd Allison
    • 1
  1. 1.Faculty of Information TechnologyMonash UniversityMelbourneAustralia

Personalised recommendations