Advertisement

Hybrid Solar Harvesters: Technological Challenges, Economic Issues, and Perspectives

  • Dario Narducci
  • Peter Bermel
  • Bruno Lorenzi
  • Ning Wang
  • Kazuaki Yazawa
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 268)

Abstract

A summary of the main issues covered in the previous chapters will serve a comparative analysis of the current and perspective possibilities that the hybridization of thermoelectric and photovoltaic generators provides. Materials demand, technological open questions, and market-related issues will be discussed. Also concerning the competition with alternate hybridization strategies, an analysis of HTEPV cost-effectiveness will be outlined. It will be shown that HTEPV may have a key role in the development of renewable energy sources, provided that a careful selection of photovoltaic materials is made. The importance of rethinking the layout of thermoelectric generators will be stressed, along with the merits of hybridization in concentrated solar generators. As an overall conclusion, pairing thermoelectric generators to photovoltaic cells will be proved to be profitable for third-generation PV materials, where hybridization might support the differentiation of the solar module market, currently pinned to silicon-based technology.

References

  1. 1.
    Energy Initiative Massachusetts Institute of Technology, The future of solar energy- an interdisciplinary mit study. Technical Report. Accessed 2015Google Scholar
  2. 2.
    J. Kilner, S. Skinner, S. Irvine, P. Edwards, Functional Materials For Sustainable Energy Applications (Woodhead Publishing Limited, 2012)Google Scholar
  3. 3.
    J. Peng, L. Lu, H. Yang, Renew. Sustain. Energy Rev. 19, 255 (2013)CrossRefGoogle Scholar
  4. 4.
    M.M. de Wild-Scholten, Sol. Energy Mater. Sol. Cells 119, 296 (2013)CrossRefGoogle Scholar
  5. 5.
    Fraunhofer ISE, Photovoltaics report. Technical Report (2014)Google Scholar
  6. 6.
    J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, Energy Environ. Sci. 8(4), 1200 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Kazmerski, Best research cell efficiencies. Technical Report. Accessed 2010Google Scholar
  8. 8.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 23(1), 1 (2014)Google Scholar
  9. 9.
    R. Miles, K. Hynes, I. Forbes, Prog. Cryst. Growth Charact. Mater. 51(1–3), 1 (2005)Google Scholar
  10. 10.
    J. Berry, T. Buonassisi, D.A. Egger, G. Hodes, L. Kronik, Y.L. Loo, I. Lubomirsky, S.R. Marder, Y. Mastai, J.S. Miller, D.B. Mitzi, Y. Paz, A.M. Rappe, I. Riess, B. Rybtchinski, O. Stafsudd, V. Stevanovic, M.F. Toney, D. Zitoun, A. Kahn, D. Ginley, D. Cahen, Adv. Mater. 27(35), 5102 (2015)CrossRefGoogle Scholar
  11. 11.
    J. He, T.M. Tritt, Science 357(6358) (2017)Google Scholar
  12. 12.
  13. 13.
    G. Rogl, P. Rogl, Curr. Opin. Green Sustain. Chem. (2017)Google Scholar
  14. 14.
    X. Lu, D.T. Morelli, in Materials Aspect of Thermoelectricity, ed. by C. Uher (CRC Press, 2016), p. 473Google Scholar
  15. 15.
    M. Rubinstein, Energy Convers. 9(4), 123IN1127 (1969)Google Scholar
  16. 16.
    C.B. Vining, Nat. Mater. 8(2), 83 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Yang, F.R. Stabler, J. Electron. Mater. 38(7), 1245 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Strasser, R. Aigner, C. Lauterbach, T. Sturm, M. Franosch, G. Wachutka, Sens. Actuators A Phys. 114(2), 362 (2004)CrossRefGoogle Scholar
  19. 19.
    H. Jayakumar, K. Lee, W.S. Lee, A. Raha, Y. Kim, V. Raghunathan, in Proceedings of the 2014 International Symposium on Low Power Electronics and Design (ACM, 2014), pp. 375–380Google Scholar
  20. 20.
    Alphabet Energy. Alphabet energy’s thermoelectric advances. http://www.alphabetenergy.com/thermoelectric-advances/
  21. 21.
    K. Yazawa, A. Shakouri, Environ. Sci. Technol. 45(17), 7548 (2011)CrossRefGoogle Scholar
  22. 22.
    S.K. Yee, S. LeBlanc, K.E. Goodson, C. Dames, Energy Environ. Sci. 6, 2561 (2013)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    R. Fu, D.J. Feldman, R.M. Margolis, M.A. Woodhouse, K.B. Ardani, US solar photovoltaic system cost benchmark: Q1 2017 Technical Report. National Renewable Energy Laboratory (NREL), Golden, CO (United States) (2017)Google Scholar
  25. 25.
    V. Fthenakis, E. Alsema, Prog. Photovoltaics Res. Appl. 14(3), 275 (2006)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L.A. Weinstein, J. Loomis, Z. Ren, G. Chen, Nat. Energy 1, 16153 (2016)CrossRefGoogle Scholar
  28. 28.
    P.A. Basore, IEEE J. Photovoltaics 4(6), 1477 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Narducci, B. Lorenzi, in 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) (IEEE, 2015), pp. 196–199Google Scholar
  30. 30.
    W. Van Sark, Appl. Energy 88(8), 2785 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Feldman, Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. Technical Report (2014). https://escholarship.org/uc/item/06b4h95q
  32. 32.
    W. Zhu, Y. Deng, Y. Wang, S. Shen, R. Gulfam, Energy 100(Supplement C), 91 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario Narducci
    • 1
  • Peter Bermel
    • 2
  • Bruno Lorenzi
    • 3
  • Ning Wang
    • 4
  • Kazuaki Yazawa
    • 2
  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.University of Milano-BicoccaMilanItaly
  4. 4.Chinese Academy of SciencesInstitute of Soil and Water ConservationYanglingChina

Personalised recommendations