Photovoltaic–Thermoelectric–Thermodynamic Co-Generation

  • Dario Narducci
  • Peter Bermel
  • Bruno Lorenzi
  • Ning Wang
  • Kazuaki Yazawa
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 268)


In this chapter, we will describe triple cogeneration technologies for solar conversion. The costs of solar conversion technologies are determined by the efficiency of power conversion, the lifetime and reliability of its components, the cost of the raw materials, potentially including storage, and any fabrication or construction required. Recently, photovoltaics and solar thermal have emerged as viable candidates for low cost power production; they each have losses that vary across the solar spectrum, with realized and theoretical efficiencies that are well below fundamental thermodynamic limits. Thus, it is desirable to split the solar spectrum to utilize both technologies in parallel over their respective optimal wavelength ranges. This chapter will present promising triple co-generation solutions that have been developed and implemented to provide electric power generation by a combination of photovoltaic and thermal generation. In particular, we show that splitting the solar spectrum, and then using high-energy solar photons for photovoltaics and medium-energy solar photons for thermoelectrics with a bottoming Rankine cycle has potential to achieve 50% solar-to-electricity conversion using existing materials. Also, over 50% of the harvested energy goes to thermal storage for generation after sunset, which could enable highly efficient baseload solar electricity and heat generation at all hours of the day.


  1. 1.
    Solar Energy Industry Association, Solar industry data, yearly U.S. solar installation by 2016 (2016),
  2. 2.
    Lawrence Livermore National Laboratory, Estimated U.S. energy consumption in 2015 (2016),
  3. 3.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32(3), 510 (1961)CrossRefGoogle Scholar
  4. 4.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 23(1), 1 (2015)CrossRefGoogle Scholar
  5. 5.
    P. Wuerfel, Sol. Energy Mater. Sol. Cells 46(1), 43 (1997)CrossRefGoogle Scholar
  6. 6.
    P. Bermel, J. Lee, J.D. Joannopoulos, I. Celanovic, M. Soljacie, Ann. Rev. Heat Transfer 15(15), 231 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Bermel, K. Yazawa, J.L. Gray, X. Xu, A. Shakouri, Energy Environ. Sci. 9(9), 2776 (2016)CrossRefGoogle Scholar
  8. 8.
    Q.C. Zhang, J. Phys. D Appl. Phys. 32(15), 1938 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Sathiaraj, R. Thangaraj, H.A. Sharbaty, M. Bhatnagar, O. Agnihotri, Thin Solid Films 190(2), 241 (1990)CrossRefGoogle Scholar
  10. 10.
    G.E. McDonald, Sol. Energy 17(2), 119 (1975)CrossRefGoogle Scholar
  11. 11.
    J.C.C. Fan, S.A. Spura, Appl. Phys. Lett. 30(10), 511 (1977)CrossRefGoogle Scholar
  12. 12.
    C.M. Lampert, J. Washburn, Sol. Energy Mater. 1(1–2), 81 (1979)CrossRefGoogle Scholar
  13. 13.
    Å. Andersson, O. Hunderi, C.G. Granqvist, J. Appl. Phys. 51(1), 754 (1980)CrossRefGoogle Scholar
  14. 14.
    A. Scherer, O.T. Inal, R.B. Pettit, J. Mater. Sci. 23(6), 1934 (1988)CrossRefGoogle Scholar
  15. 15.
    C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials. Technical Report No. TP-520-31267 (2002)Google Scholar
  16. 16.
    Q.C. Zhang, Sol. Energy Mater. Sol. Cells 62(1–2), 63 (2000)CrossRefGoogle Scholar
  17. 17.
    Q.C. Zhang, J. Phys. D Appl. Phys. 31(4), 355 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Q.C. Zhang, K. Zhao, B.C. Zhang, L.F. Wang, Z.L. Shen, D.Q. Lu, D.L. Xie, B.F. Li, J. Vac. Sci. Technol. A Vac. Surf. Films 17(5), 2885 (1999)Google Scholar
  19. 19.
    D. Chester, P. Bermel, J.D. Joannopoulos, M. Soljacic, I. Celanovic, Opt. Express 19(S3), A245 (2011)CrossRefGoogle Scholar
  20. 20.
    Q.C. Zhang, Y. Yin, D.R. Mills, Sol. Energy Mater. Sol. Cells 40(1), 43 (1996)CrossRefGoogle Scholar
  21. 21.
    P. Bermel, W. Chan, Y.X. Yeng, J.D. Joannopoulos, M. Soljacic, I. Celanovic, in Thermophotovoltaic World Conference, vol. 9 (2010)Google Scholar
  22. 22.
    H. Tian, Z. Zhou, T. Liu, C. Karina, U. Guler, V. Shalaev, P. Bermel, Appl. Phys. Lett. 110(14), 141101 (2017)CrossRefGoogle Scholar
  23. 23.
    O. Ilic, P. Bermel, G. Chen, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Nat. Nanotechnol. 11(4), 320 (2016)CrossRefGoogle Scholar
  24. 24.
    US Department of Energy, Office of Energy Efficiency and Renewable Energy, Power tower system concentrating solar power basics (2013),
  25. 25.
    N.S. Kumar, K. Reddy, Energy Convers. Manag. 49(4), 812 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Giuffrida, G.P. Tornielli, S. Pidatella, A. Repetto, E. Bellafronte, P.E. Zani, in Photovoltaic Solar Energy Conference (Springer, Netherlands, 1981), pp. 391–395Google Scholar
  27. 27.
    S.A. Kalogirou, Prog. Energy Combust. Sci. 30(3), 231 (2004)CrossRefGoogle Scholar
  28. 28.
    NREL, Concentrating solar resource of the united states (2012),
  29. 29.
    J. Chaves, Introduction to Nonimaging Optics, 2nd edn. (CRC Press, 2015)Google Scholar
  30. 30.
    K. Yazawa, A. Shakouri, J. Appl. Phys. 111(2), 024509 (2012)CrossRefGoogle Scholar
  31. 31.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43(1), 22 (1975)CrossRefGoogle Scholar
  32. 32.
    T. Caillat, J.P. Fleurial, G. Snyder, A. Zoltan, D. Zoltan, A. Borshchevsky, in Proceedings of the 18th International Conference on Thermoelectrics (Cat. No.99TH8407) (IEEE, 1999)Google Scholar
  33. 33.
    M. Rull-Bravo, A. Moure, J.F. Fernández, M. Martín-González, RSC Adv. 5(52), 41653 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Suhir, A. Shakouri, J. Appl. Mech. 80(2), 021012 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Ziabari, E. Suhir, A. Shakouri, Microelectron. J. 45(5), 547 (2014)CrossRefGoogle Scholar
  36. 36.
  37. 37.
  38. 38.
    S. Imano, E. Saito, J. Iwasaki, M. Kitamura, High-temperature steam turbine power plant, U.S. Patent No. US 8201410 B2 (2012)Google Scholar
  39. 39.
    H.E. Reilly, G.J. Kolb, An evaluation of molten-salt power towers including results of the solar two project. Technical Report (2001)Google Scholar
  40. 40.
    S. Mahiuddin, K. Ismail, Fluid Phase Equilib. 123(1–2), 231 (1996)Google Scholar
  41. 41.
    S.W. Moore, in Solar Collectors, Energy Storages, and Materials, ed. by F. de Winter (MIT Press, 1990), pp. 831–880Google Scholar
  42. 42.
  43. 43.
    R. Rowshanzadeh, Performance and cost evaluation of organic rankine cycle at different technologies. Master thesis, KTH Royal Institute of Technology, Sweden, 2010Google Scholar
  44. 44.
    K. Yazawa, M. Hao, B. Wu, A.K. Silaen, C.Q. Zhou, T.S. Fisher, A. Shakouri, Energy Convers. Manag. 84, 244 (2014)CrossRefGoogle Scholar
  45. 45.
    Electric Power Research Institute, Program on technology innovation: New concepts of water conservation cooling and water treatment technologies. Technical Report 1025642 (2012)Google Scholar
  46. 46.
    C.H. Henry, J. Appl. Phys. 51(8), 4494 (1980)CrossRefGoogle Scholar
  47. 47.
    ASTMG173-03, Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37 degree tilted surface (2005)Google Scholar
  48. 48.
    N.P. Harder, P. Wuerfel, Semicond. Sci. Technol. 18(5), S151 (2003)CrossRefGoogle Scholar
  49. 49.
    B. Wernsman, R. Siergiej, S. Link, R. Mahorter, M. Palmisiano, R. Wehrer, R. Schultz, G. Schmuck, R. Messham, S. Murray, C. Murray, F. Newman, D. Taylor, D. DePoy, T. Rahmlow, IEEE Trans. Electron Devices 51(3), 512 (2004)CrossRefGoogle Scholar
  50. 50.
    X. Wang, M.R. Khan, M. Lundstrom, P. Bermel, Opt. Express 22(S2), A344 (2014)CrossRefGoogle Scholar
  51. 51.
    M.G. Mauk, in Mid-infrared Semiconductor Optoelectronics (Springer, London, 2006), pp. 673–738Google Scholar
  52. 52.
    B. Kucur, M. Ahmetoglu, I. Andreev, E. Kunitsyna, M. Mikhailova, Y. Yakovlev, Acta Phys. Pol. A 129(4), 767 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario Narducci
    • 1
  • Peter Bermel
    • 2
  • Bruno Lorenzi
    • 3
  • Ning Wang
    • 4
  • Kazuaki Yazawa
    • 2
  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.University of Milano-BicoccaMilanItaly
  4. 4.Chinese Academy of SciencesInstitute of Soil and Water ConservationYanglingChina

Personalised recommendations