A Primer on Photovoltaic Generators

  • Dario Narducci
  • Peter Bermel
  • Bruno Lorenzi
  • Ning Wang
  • Kazuaki Yazawa
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 268)


The most common and efficient way to covert solar power into useful work is by photovoltaic generation. Photovoltaic cells are devices that convert radiative energy into electric energy. This chapter outlines the mechanism of photovoltaic conversion. The physical principles are introduced and described, and their implementation in real devices (cells and modules) is discussed with reference to the so called three solar cell generations, namely bulk cells, thin film cells, and cells based on dye sensitization. The role played by materials in each cell generation is also examined.


  1. 1.
    ASTM Standard, E490. Accessed 27 Dec 1973
  2. 2.
    ASTM Standard, G173-03. Accessed 2012
  3. 3.
    S.J. Fonash, Homojunction Solar Cells (Elsevier, 2010)Google Scholar
  4. 4.
    J. Nelson, The Physics of Solar Cells, in Series on Properties of Semiconductor Materials (Imperial College Press, 2003)Google Scholar
  5. 5.
    A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2011)Google Scholar
  6. 6.
    P. Würfel, U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley, 2016)Google Scholar
  7. 7.
    D. Frank, New world record for solar cell efficiency at 46% french-german cooperation confirms competitive advantage of european photovoltaic industry. Technical Report 14 March 2016Google Scholar
  8. 8.
    Sharp Develops Solar Cell With World’s Highest Conversion Efficiency of 35.8%, Accessed 3 June 2012
  9. 9.
    SunPower, Sunpower tm x-series data sheet. Technical Report (2013)Google Scholar
  10. 10.
    T. Ibn-Mohammed, S. Koh, I. Reaney, A. Acquaye, G. Schileo, K. Mustapha, R. Greenough, Renew. Sustain. Energy Rev. 80, 1321 (2017)Google Scholar
  11. 11.
    J. Zhao, A. Wang, M.A. Green, Prog. Photovolt. Res. Appl. 7(6), 471 (1999)Google Scholar
  12. 12.
    M.A. Green, Prog. Photovolt. Res. Appl. 17(3), 183 (2009)Google Scholar
  13. 13.
    Energy Initiative Massachusetts Institute of Technology, The future of solar energy- an interdisciplinary mit study. Technical Report. Accessed 2015Google Scholar
  14. 14.
    J. Kilner, S. Skinner, S. Irvine, P. Edwards, Functional materials for sustainable energy applications (Woodhead Publishing Limited, 2012)Google Scholar
  15. 15.
    R. Miles, K. Hynes, I. Forbes, Prog. Cryst. Growth Charact. Mater 51(1–3), 1 (2005)Google Scholar
  16. 16.
    J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, Energy Environ. Sci. 8(4), 1200 (2015)Google Scholar
  17. 17.
    Y. Zhou (ed.), Eco- and Renewable Energy Materials (Springer, 2013)Google Scholar
  18. 18.
    A. Metz, M. Fischer, G. Xing, L. Yong, S. Julsrud, International technology roadmap for photovoltaic (itrpv). Technical Report. Accessed Mar 2013Google Scholar
  19. 19.
    A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T.L. James, M. Woodhouse, Sol. Energy Mater. Sol. Cells 114, 110 (2013)Google Scholar
  20. 20.
    M.A. Green, Sol. Energy 74(3), 181 (2003)Google Scholar
  21. 21.
    M.A. Green, Solar cells: operating principles, technology, and system applications (Prentice-Hall Inc, Englewood Cliffs, 1982)Google Scholar
  22. 22.
    L. Kazmerski, Best research cell efficiencies. Technical Report. Accessed 2010Google Scholar
  23. 23.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 23(1), 1 (2014)Google Scholar
  24. 24.
    D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31(4), 292 (1977)Google Scholar
  25. 25.
    C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, V.M. Fthenakis, E.S. Aydil, J. Vac. Sci. Technol. A Vac. Surf. Films 29(3), 030801 (2011)Google Scholar
  26. 26.
    J. Peng, L. Lu, H. Yang, Renew. Sustain. Energy Rev. 19, 255 (2013)Google Scholar
  27. 27.
    M.M. de Wild-Scholten, Sol. Energy Mater. Sol Cells 119, 296 (2013)Google Scholar
  28. 28.
    V.M. Fthenakis, Renew. Sustain. Energy Rev. 8, 303 (2004)Google Scholar
  29. 29.
    Fraunhofer ISE, Photovoltaics report. Technical Report (2014)Google Scholar
  30. 30.
    A.M. Bagher, M.M.A. Vahid, M. Mohsen, Am. J. Opt. Photonics 3, 94 (2015)Google Scholar
  31. 31.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res Appl. 16(3), 235 (2008)Google Scholar
  32. 32.
    E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Appl. Phys. Lett. 51(26), 2222 (1987)Google Scholar
  33. 33.
    F. Cucchiella, I. DAdamo, P. Rosa. Renew. Sustain. Energy Rev. 47, 552 (2015)Google Scholar
  34. 34.
    M. Green, The Physics of Solar Cells: Third Generation Photovoltaics (Imperial College Press, New York, 2003)Google Scholar
  35. 35.
    K. Zhao, Z. Pan, X. Zhong, J. Phys. Chem. Lett. 7(3), 406 (2016)Google Scholar
  36. 36.
    C.H. Chang, Y.L. Lee, Appl. Phys. Lett. 91(5), 053503 (2007)Google Scholar
  37. 37.
    H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, M.K. Nazeeruddin, Nano Lett. 9(12), 4221 (2009)Google Scholar
  38. 38.
    H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grtzel, N.G. Park, Nano Lett. 13(6), 2412 (2013)CrossRefGoogle Scholar
  39. 39.
    P.P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Seró, J. Bisquert, J. Phys. Chem. C 116(1), 1579 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Shalom, Z. Tachan, Y. Bouhadana, H.N. Barad, A. Zaban, J. Phys. Chem. Lett. 2(16), 1998 (2011)CrossRefGoogle Scholar
  41. 41.
    L. Dou, J. You, J. Yang, C.C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photonics 6(3), 180 (2012)CrossRefGoogle Scholar
  42. 42.
    J. Berry, T. Buonassisi, D.A. Egger, G. Hodes, L. Kronik, Y.L. Loo, I. Lubomirsky, S.R. Marder, Y. Mastai, J.S. Miller, D.B. Mitzi, Y. Paz, A.M. Rappe, I. Riess, B. Rybtchinski, O. Stafsudd, V. Stevanovic, M.F. Toney, D. Zitoun, A. Kahn, D. Ginley, D. Cahen, Adv. Mater. 27(35), 5102 (2015)Google Scholar
  43. 43.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grtzel, N.G. Park, Sci. Rep. 2(1) (2012)Google Scholar
  44. 44.
    NREL, Research cell efficiency records. Technical Report. Accessed April 2016Google Scholar
  45. 45.
    Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, J. Phys. Chem. Lett. 5, 1004 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chemie Int. Ed. 53(11), 2812 (2014)Google Scholar
  47. 47.
    J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Energy Environ. Sci. 6(6), 1739 (2013)CrossRefGoogle Scholar
  48. 48.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347(6225), 967 (2015)CrossRefGoogle Scholar
  49. 49.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8(7), 506 (2014)CrossRefGoogle Scholar
  50. 50.
    J. Mandelkorn, C. McAfee, J. Kesperis, L. Schwartz, W. Pharo, J. Electrochem. Soc. 109(4), 313 (1962)CrossRefGoogle Scholar
  51. 51.
    H. Flicker, J.J. Loferski, J. Scott-Monck, Phys. Rev. 128(6), 2557 (1962)CrossRefGoogle Scholar
  52. 52.
    C. Battaglia, A. Cuevas, S.D. Wolf, Energy Environ. Sci. 9(5), 1552 (2016)CrossRefGoogle Scholar
  53. 53.
    J. Gong, J. Liang, K. Sumathy, Renew. Sustain. Energy Rev. 16(8), 5848 (2012)CrossRefGoogle Scholar
  54. 54.
    I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 1(20), 3046 (2010)CrossRefGoogle Scholar
  55. 55.
    G. Hodes, J. Phys. Chem. C 112(46), 17778 (2008)CrossRefGoogle Scholar
  56. 56.
    T. Sogabe, Q. Shen, K. Yamaguchi, J. Photonics Energy 6(4), 040901 (2016)CrossRefGoogle Scholar
  57. 57.
    P.B. Miranda, D. Moses, A.J. Heeger, Phys. Rev. B 64(8) (2001)Google Scholar
  58. 58.
    A.J. Mozer, N.S. Sariciftci, C. R. Chimie 9(5–6), 568 (2006)CrossRefGoogle Scholar
  59. 59.
    J.M. Nunzi, C. R. Phys. 3(4), 523 (2002)CrossRefGoogle Scholar
  60. 60.
    C.J. Brabec, G. Zerza, G. Cerullo, S.D. Silvestri, S. Luzzati, J.C. Hummelen, S. Sariciftci, Chem. Phys. Lett. 340(3–4), 232 (2001)CrossRefGoogle Scholar
  61. 61.
    S. Gnes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107(4), 1324 (2007)CrossRefGoogle Scholar
  62. 62.
    A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grtzel, J.E. Moser, Nat. Photonics 8(3), 250 (2014)CrossRefGoogle Scholar
  63. 63.
    L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, J. Am. Chem. Soc. 136(35), 12205 (2014)CrossRefGoogle Scholar
  64. 64.
    C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, V. Sundstrm, J. Am. Chem. Soc. 136(14), 5189 (2014)CrossRefGoogle Scholar
  65. 65.
    H. Oga, A. Saeki, Y. Ogomi, S. Hayase, S. Seki, J. Am. Chem. Soc. 136(39), 13818 (2014)CrossRefGoogle Scholar
  66. 66.
    Y. Zhao, A.M. Nardes, K. Zhu, J. Phys. Chem. Lett. 5(3), 490 (2014)CrossRefGoogle Scholar
  67. 67.
    Y. Zhao, A.M. Nardes, K. Zhu, Faraday Discuss. 176, 301 (2014)CrossRefGoogle Scholar
  68. 68.
    D. Bi, A.M. El-Zohry, A. Hagfeldt, G. Boschloo, ACS Photonics 2(5), 589 (2015)CrossRefGoogle Scholar
  69. 69.
    T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, J. Phys. Chem. Lett. 5(7), 1096 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario Narducci
    • 1
  • Peter Bermel
    • 2
  • Bruno Lorenzi
    • 3
  • Ning Wang
    • 4
  • Kazuaki Yazawa
    • 2
  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.University of Milano-BicoccaMilanItaly
  4. 4.Chinese Academy of SciencesInstitute of Soil and Water ConservationYanglingChina

Personalised recommendations