Advertisement

Solar Thermoelectric Generators

  • Dario Narducci
  • Peter Bermel
  • Bruno Lorenzi
  • Ning Wang
  • Kazuaki Yazawa
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 268)

Abstract

In this chapter we will present the full-thermal approach to thermoelectric solar harvesting. Analysing the state of the art of this field we will report on its historical development, showing its advantages. Technical and technological issues solved and yet to be solved will be addressed as well. Starting from a description of the main system components we will analyse the literature and the strategies reported so far. Then we will discuss how a solar thermoelectric genenerator (STEG) may be modeled, quantitatively predicting their final efficiency. This analysis will show which are the main parameters influencing STEG performances, suggesting which are the best solutions to achieve efficiencies competitive with other solar strategies.

References

  1. 1.
    W.W. Coblentz, Sci. Am. 127, 324 (1922)CrossRefGoogle Scholar
  2. 2.
    M. Telkes, J. Appl. Phys. 25(6), 765 (1954)CrossRefGoogle Scholar
  3. 3.
    D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 25, 676 (1954)CrossRefGoogle Scholar
  4. 4.
    M. Telkes, J. Appl. Phys. 181(10), 1116 (1947).  https://doi.org/10.1063/1.362507. http://dx.doi.org/10.1063/1.1697593
  5. 5.
    G.W. Glassburn, IEEE Trans. Aerosp. 1(2), 1396 (1963).  https://doi.org/10.1109/TA.1963.4319515CrossRefGoogle Scholar
  6. 6.
    N. Fuschillo, R. Gibson, F.K. Eggleston, J. Epstein, IEEE Trans. Aerosp. AS-3(2), 652 (1965).  https://doi.org/10.1109/TA.1965.4319865
  7. 7.
    F.K. Eggleston, N. Fuschillo, IEEE Trans. Aerosp. AS-3(2), 674 (1965).  https://doi.org/10.1109/TA.1965.4319867
  8. 8.
    N. Fuschillo, R. Gibson, F. Eggleston, J. Epstein, Advanced Energy Conversion 6(2), 103 (1966).  https://doi.org/10.1016/0365-1789(66)90004-XCrossRefGoogle Scholar
  9. 9.
    M. Swerdling, V. Raag, J. Energy 3(5), 291 (1979).  https://doi.org/10.2514/3.62438CrossRefGoogle Scholar
  10. 10.
    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8(July), 471 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Mizoshiri, M. Mikami, K. Ozaki, K. Kobayashi, J. Electron. Mater. 41(6), 1713 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Kraemer, K. McEnaney, M. Chiesa, G. Chen, Sol. Energy 86(5), 1338 (2012)CrossRefGoogle Scholar
  13. 13.
    M.T. de Leon, H. Chong, M. Kraft, J. Micromechanics Microengineering 24(8), 085011 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Pereira, T. Caroff, G. Lorin, T. Baffie, K. Romanjek, S. Vesin, K. Kusiaku, H. Duchemin, V. Salvador, N. Miloud-Ali, L. Aixala, J. Simon, Energy 84, 485 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L.A. Weinstein, J. Loomis, Z. Ren, G. Chen, Nat. Energy 1, 16153 (2016). SeptemberCrossRefGoogle Scholar
  16. 16.
    Y. Cai, J. Xiao, W. Zhao, X. Tang, Q. Zhang, J. Electron. Mater. 40(5), 1238 (2011)CrossRefGoogle Scholar
  17. 17.
    D. Kossyvakis, C. Vossou, C. Provatidis, E. Hristoforou, Renew. Energy 81, 150 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Amatya, R.J. Ram, J. Electron. Mater. 39(9), 1735 (2010)CrossRefGoogle Scholar
  19. 19.
    A.A. Candadai, V.P. Kumar, H.C. Barshilia, Solar Energy Mater. Solar Cells 145, 333 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Goldsmid, J. Giutronich, M. Kaila, Solar Energy 24(5), 435 (1980).  https://doi.org/10.1016/0038-092X(80)90311-4, http://linkinghub.elsevier.com/retrieve/pii/0038092X80903114
  21. 21.
    E.A. Chávez Urbiola, Y. Vorobiev, Int. J. Photoenergy 2013(4) (2013).  https://doi.org/10.1155/2013/704087
  22. 22.
    L. Miao, Y.P. Kang, C. Li, S. Tanemura, C.L. Wan, Y. Iwamoto, Y. Shen, H. Lin, J. Electron. Mater. 44(6), 1972 (2015).  https://doi.org/10.1007/s11664-015-3626-7CrossRefGoogle Scholar
  23. 23.
    W. He, Y. Su, S. Riffat, J. Hou, J. Ji, Appl. Energy 88(12), 5083 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Li, M. Zhang, L. Miao, J. Zhou, Y.P. Kang, C. Fisher, K. Ohno, Y. Shen, H. Lin, Energy Convers. Manag. 86, 944 (2014)Google Scholar
  25. 25.
    A.E. Özdemir, Y. Köysal, E. Özba, T. Atalay, Energy Convers. Manag. 98, 127 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Rehman, M.A. Siddiqui, J. Electron. Mater. 45(10), 5285 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Manikandan, S. Kaushik, Sol. Energy 135, 569 (2016)CrossRefGoogle Scholar
  28. 28.
    G. Li, G. Zhang, W. He, J. Ji, S. Lv, X. Chen, H. Chen, Energy Convers. Manag. 112, 191 (2016)Google Scholar
  29. 29.
    Y.J. Dai, H.M. Hu, T.S. Ge, R.Z. Wang, P. Kjellsen, Renew. Energy 92, 83 (2016)CrossRefGoogle Scholar
  30. 30.
    R. De Luca, S. Ganci, P. Zozzaro, B.G.D, R.F. De Luca R,Z.P, C.A, S.R.J, Y.H.D. F.W. Sears, M.W. Zemansky, Eur. J. Phys.29(6), 1295 (2008)Google Scholar
  31. 31.
    G. Muthu, S. Shanmugam, A. Veerappan, Energy Proc. 54, 2 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Zhu, T. Matsuura, R. Suzuki, T. Tsuchiya, Energy Proc. 52, 651 (2014)Google Scholar
  33. 33.
    G. Muthu, S. Shanmugam, A. Veerappan, J. Electron. Mater. 44(8), 2631 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Omer, Solar Energy Mater. Solar Cells 53(1–2), 67 (1998)CrossRefGoogle Scholar
  35. 35.
    C.A. Mgbemene, J. Duffy, H. Sun, S.O. Onyegegbu, J. Solar Energy Eng. 132, 031015 (2010)CrossRefGoogle Scholar
  36. 36.
    C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, Sol. Energy 85(7), 1511 (2011)CrossRefGoogle Scholar
  37. 37.
    D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, G. Chen, Nat. Mater. 10(7), 422 (2011)CrossRefGoogle Scholar
  38. 38.
    K. Sudharshan, V.P. Kumar, H.C. Barshilia, Solar Energy Mater. Solar Cells 157, 93 (2016)CrossRefGoogle Scholar
  39. 39.
    T. Durst, L.B. Harris, H.J. Goldsmid, Solar Energy 31(4), 421 (1983).  https://doi.org/10.1016/0038-092X(83)90143-3
  40. 40.
    M. Zhang, L. Miao, Y.P. Kang, S. Tanemura, C.A.J. Fisher, G. Xu, C.X. Li, G.Z. Fan, Appl. Energy 109, 51 (2013).  https://doi.org/10.1016/j.apenergy.2013.03.008
  41. 41.
    F. Cao, D. Kraemer, T. Sun, Y. Lan, G. Chen, Z. Ren, Adv. Energy Mater. 5(2), 1 (2015).  https://doi.org/10.1002/aenm.201401042CrossRefGoogle Scholar
  42. 42.
    Y. Da, Y. Xuan, Sci. China Technol. Sci. 58(1), 19 (2015)CrossRefGoogle Scholar
  43. 43.
    Z. Fang, C. Lu, D. Gao, Y. Lu, C. Guo, Y. Ni, Z. Xu, P. Li, J. Eur. Ceram. Soc. 35(4), 1343 (2015)CrossRefGoogle Scholar
  44. 44.
    L.L. Baranowski, E.L. Warren, E.S. Toberer, J. Electron. Mater. 43(6), 2348 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Olsen, E. Warren, P. Parilla, E. Toberer, C. Kennedy, G. Snyder, S. Firdosy, B. Nesmith, A. Zakutayev, A. Goodrich, C. Turchi, J. Netter, M. Gray, P. Ndione, R. Tirawat, L. Baranowski, A. Gray, D. Ginley, Energy Proc. 49, 1460 (2014)CrossRefGoogle Scholar
  46. 46.
    A. Agbossou, Q. Zhang, Z. Feng, M. Cosnier, Sens. Actuators A Phys. 163(1), 277 (2010)CrossRefGoogle Scholar
  47. 47.
    M.L. Olsen, J. Rea, G.C. Glatzmaier, C. Hardin, C. Oshman, J. Vaughn, T. Roark, J.W. Raade, R.W. Bradshaw, J. Sharp, A.D. Avery, D. Bobela, R. Bonner, R. Weigand, D. Campo, P.A. Parilla, N.P. Siegel, E.S. Toberer, D.S. Ginley, AIP Conference Proceedings AIP 0500351(10) (2016).  https://doi.org/10.1063/1.4949121, http://dx.doi.org/10.1063/1.4949133
  48. 48.
    Q. Zhang, A. Agbossou, Z. Feng, M. Cosnier, Sens. Actuators A Phys. 163(1), 277 (2010).  https://doi.org/10.1016/j.sna.2010.06.026, http://dx.doi.org/10.1016/j.sna.2010.06.027
  49. 49.
    Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Lett. 8(1) (2008)Google Scholar
  50. 50.
    X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z.F. Ren, Nano Lett. 10, 3373 (2010).  https://doi.org/10.1021/nl101156vCrossRefGoogle Scholar
  51. 51.
    M.T.D. Leon, H. Chong, M. Kraft, Proc. Eng. 47, 76 (2012)CrossRefGoogle Scholar
  52. 52.
    L.A. Weinstein, K. McEnaney, G. Chen, J. Appl. Phys. 113(16), 164504 (2013)CrossRefGoogle Scholar
  53. 53.
    L. Tayebi, Z. Zamanipour, D. Vashaee, Renew. Energy 69, 166 (2014)CrossRefGoogle Scholar
  54. 54.
    W. Zhu, Y. Deng, M. Gao, Y. Wang, Energy Convers. Manag. 106, 1192 (2015)CrossRefGoogle Scholar
  55. 55.
    W. Zhu, Y. Deng, M. Gao, Y. Wang, J. Cui, H. Gao, Energy 89, 106 (2015)CrossRefGoogle Scholar
  56. 56.
    K. McEnaney, D. Kraemer, Z. Ren, G. Chen, J. Appl. Phys. 110(7) (2011)Google Scholar
  57. 57.
    T. Yang, J. Xiao, P. Li, P. Zhai, Q. Zhang, J. Electron. Mater. 40(5), 967 (2011)CrossRefGoogle Scholar
  58. 58.
    J. Xiao, T. Yang, P. Li, P. Zhai, Q. Zhang, Appl. Energy 93, 33 (2012)CrossRefGoogle Scholar
  59. 59.
    W.H. Chen, C.C. Wang, C.I. Hung, C.C. Yang, R.C. Juang, Energy 64, 287 (2014)CrossRefGoogle Scholar
  60. 60.
    S. Su, J. Chen, IEEE Trans. Ind. Electron. 62(6), 3569 (2015)Google Scholar
  61. 61.
    R. Siegel, J.R. Howell, M.P. Menguc, Thermal Radiation Heat Transfer, 5th edn. (Taylor & Francis, NY, 2002). https://www.crcpress.com/Thermal-Radiation-Heat-Transfer-5th-Edition/Howell-Menguc-Siegel/p/book/9781439866689
  62. 62.
    G. Chen, J. Appl. Phys. 109(10) (2011)Google Scholar
  63. 63.
    K. Yazawa, A. Shakouri, in Thermal Issues in Emerging Technologies, ThETA 3, Cairo Egypt, Dec 19–22nd 2010 (2010), pp. 283–290Google Scholar
  64. 64.
    K. Yazawa, G.L. Solbrekken, A. Bar-Cohen, in 2003 International Electronic Packaging Technical Conference and Exhibition, vol. 2, (ASME, 2003), pp. 509–516.  https://doi.org/10.1115/IPACK2003-35242, http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/IPACK2003-35242
  65. 65.
    Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, H. Lu, Y. Yang, F. Qiu, C. Trautmann, A. Bertsch, N.M. White, A.S. Paulo, A. Shakouri, L. Fonseca, K. Kim, J. Mater. Chem. A 1(20), 6110 (2013).  https://doi.org/10.1039/c3ta01594g, http://xlink.rsc.org/?DOI=c3ta01594g
  66. 66.
    X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z.F. Ren, Nano Lett. 10(9), 3373 (2010).  https://doi.org/10.1021/nl101156v
  67. 67.
    S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, H.H. Hng, Appl. Phys. Lett. 96(18), 182104 (2010).  https://doi.org/10.1063/1.3427427, http://aip.scitation.org/doi/10.1063/1.3427427
  68. 68.
    K. Biswas, J. He, I.D. Blum, Chun-IWu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 490(7421), 570 (2012).  https://doi.org/10.1038/nature11645
  69. 69.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303(5659) (2004). http://science.sciencemag.org/content/303/5659/818
  70. 70.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Kerber, M. Zehetbauer, S. Puchegger, Intermetallics 18(12), 2435 (2010).  https://doi.org/10.1016/j.intermet.2010.08.041, http://linkinghub.elsevier.com/retrieve/pii/S0966979510003821
  71. 71.
    W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, X. Tang, J. Am. Chem. Soc. 131(10), 3713 (2009).  https://doi.org/10.1021/ja8089334, http://pubs.acs.org/doi/abs/10.1021/ja8089334
  72. 72.
    G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 8(12), 4670 (2008).  https://doi.org/10.1021/nl8026795
  73. 73.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93(19), 193121 (2008).  https://doi.org/10.1063/1.3027060

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario Narducci
    • 1
  • Peter Bermel
    • 2
  • Bruno Lorenzi
    • 3
  • Ning Wang
    • 4
  • Kazuaki Yazawa
    • 2
  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.University of Milano-BicoccaMilanItaly
  4. 4.Chinese Academy of SciencesInstitute of Soil and Water ConservationYanglingChina

Personalised recommendations