Visuospatial Cognition

  • Jonathan Buening
  • Rhonda Douglas Brown


In this chapter, we present theory and research on early- and later-developing visuospatial cognition into adulthood and its importance to mathematical cognitive development. We describe the development of dorsal and ventral visual pathways associated with the visuospatial functions of spatial awareness and pattern processing. Research using cognitive neuroscience techniques, including functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), and Transcranial Magnetic Stimulation (TMS), is presented on the following topics relevant to visuospatial cognition and its development: visual attention and search, visual perception and judgment, geometry, visual imagery and mental rotation, and visuospatial working memory. We conclude that the parietal lobe plays an important role in general visuospatial cognition and that the right hemisphere is dominant for certain visuospatial skills. Other brain areas related to visuospatial cognition include the superior frontal gyrus/sulcus, anterior insular cortex, temporal-occipital cortex, dorsolateral prefrontal cortex, precentral gyrus, and left hemisphere dorsal anterior cingulate cortex.


Visuospatial cognition Dorsal visual pathway Ventral visual pathway Visual attention Visual search Visual perception Visual judgment Visual imagery Mental rotation Visuospatial working memory 


  1. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–90). New York, NY: Academic Press.Google Scholar
  2. Butcher, P. R., Kalverboer, A. F., & Geuze, R. H. (1999). Inhibition of return in very young infants: A longitudinal study. Infant Behavior & Development, 22(3), 303–319. CrossRefGoogle Scholar
  3. Chinello, A., Cattani, V., Bonfiglioli, C., Dehaene, S., & Piazza, M. (2013). Objects, numbers, fingers, space: Clustering of ventral and dorsal functions in young children and adults. Developmental Science, 16(3), 377–393. CrossRefPubMedGoogle Scholar
  4. Clohessy, A. B., Posner, M. I., Rothbart, M. K., & Vecera, S. P. (1991). The development of inhibition of return in early infancy. Journal of Cognitive Neuroscience, 3(4), 345–350. CrossRefPubMedGoogle Scholar
  5. de Graaf, T. A., Roebroeck, A., Goebel, R., & Sack, A. T. (2010). Brain network dynamics underlying visuospatial judgment: An fMRI connectivity study. Journal of Cognitive Neuroscience, 22(9), 2012–2026. CrossRefPubMedGoogle Scholar
  6. Dumontheil, I., & Klingberg, T. (2012). Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cerebral Cortex, 22(5), 1078–1085. CrossRefPubMedGoogle Scholar
  7. Ebisch, S. J., Perrucci, M. G., Mercuri, P., Romanelli, R., Mantini, D., Romani, G. L., … Saggino, A. (2012). Common and unique neuro-functional basis of induction, visualization, and spatial relationships as cognitive components of fluid intelligence. Neuroimage, 62(1), 331–342. CrossRefPubMedGoogle Scholar
  8. Eslinger, P. J., Blair, C., Wang, J., Lipovsky, B., Realmuto, J., Baker, D., … Yang, Q. X. (2009). Developmental shifts in fMRI activations during visuospatial relational reasoning. Brain and Cognition, 69(1), 1–10. CrossRefPubMedGoogle Scholar
  9. Everts, R., Lidzba, K., Wilke, M., Kiefer, C., Mordasini, M., Schroth, G., … Steinlin, M. (2009). Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Human Brain Mapping, 30(2), 473–483. CrossRefPubMedGoogle Scholar
  10. Fink, G. R., Marshall, J. C., Shah, N. J., Weiss, P. H., Halligan, P. W., Grosse-Ruyken, M., … Freund, H. (2000). Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology, 54(6), 1324–1331. CrossRefPubMedGoogle Scholar
  11. Geary, D. C., & Burlingham-Dubree, M. (1989). External validation of the strategy choice model for addition. Journal of Experimental Child Psychology, 47(2), 175–192. CrossRefGoogle Scholar
  12. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. CrossRefPubMedGoogle Scholar
  13. Heil, M., & Jansen-Osmann, P. (2007). Children’s left parietal brain activation during mental rotation is reliable as well as specific. Cognitive Development, 22(2), 280–288. CrossRefGoogle Scholar
  14. Hood, B. M. (1993). Inhibition of return produced by covert shifts of visual attention in 6-month-old infants. Infant Behavior & Development, 16(2), 245–254. CrossRefGoogle Scholar
  15. Izard, V., Pica, P., Dehaene, S., Hinchey, D., & Spelke, E. (2011). Geometry as a universal mental construction. In S. Dehaene & E. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 319–332). San Diego, CA: Elsevier Academic Press. CrossRefGoogle Scholar
  16. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 1–10. CrossRefPubMedGoogle Scholar
  17. Kozhevnikov, M., & Blazhenkova, O. (2013). Individual differences in object versus spatial imagery: From neural correlates to real-world applications. In S. Lacey & R. Lawson (Eds.), Multisensory imagery (pp. 299–318). New York, NY: Springer Science + Business Media. CrossRefGoogle Scholar
  18. Lange, L. F., Heil, M., & Jansen, P. (2010). Does children’s left hemisphere lateralization during mental rotation depend upon the stimulus material? Journal of Individual Differences, 31(2), 91–94. CrossRefGoogle Scholar
  19. Mangina, C. A., Beuzeron-Mangina, H., Casarotto, S., Chiarenza, G. A., Pietrini, P., & Ricciardi, E. (2009). Modulation of specific brain activity by the perceptual analysis of very subtle geometrical relationships of the Mangina-Test stimuli: A functional magnetic resonance imaging (fMRI) investigation in young healthy adults. International Journal of Psychophysiology, 73(2), 157–163. CrossRefPubMedGoogle Scholar
  20. Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1), 57–77. CrossRefPubMedGoogle Scholar
  21. Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two- vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529–539. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pickering, S. J. (2001). The development of visuo-spatial working memory. Memory, 9(4–6), 423–432. CrossRefPubMedGoogle Scholar
  23. Pisella, L., André, V., Gavault, E., Le Flem, A., Luc-Pupat, E., Glissoux, C., … Gonzalez-Monge, S. (2013). A test revealing the slow acquisition and the dorsal stream substrate of visuo-spatial perception. Neuropsychologia, 51(1), 106–113. CrossRefPubMedGoogle Scholar
  24. Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25. CrossRefPubMedGoogle Scholar
  25. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. CrossRefPubMedGoogle Scholar
  26. Roberts, J. E., & Bell, M. A. (2000). Sex differences on a mental rotation task: Variations in electroencephalogram hemispheric activation between children and college students. Developmental Neuropsychology, 17(2), 199–223. CrossRefPubMedGoogle Scholar
  27. Sack, A. T., Kohler, A., Bestmann, S., Linden, D. J., Dechent, P., Goebel, R., & Baudewig, J. (2007). Imaging the brain activity changes underlying impaired visuospatial judgments: Simultaneous fMRI, TMS and behavioral studies. Cerebral Cortex, 17(12), 2841–2852. CrossRefPubMedGoogle Scholar
  28. Scherf, K. S., Sweeney, J. A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience, 18(7), 1045–1058. CrossRefPubMedGoogle Scholar
  29. Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions. Neuroimage, 22, 1414–1420. Retrieved from CrossRefGoogle Scholar
  30. Simion, F., Valenza, E., Umiltá, C., & Dalla Barba, B. (1995). Inhibition of return in newborns is temporo-nasal asymmetrical. Infant Behavior & Development, 18(2), 189–194. CrossRefGoogle Scholar
  31. Smith, S. E., & Chatterjee, A. (2008). Visuospatial attention in children. Archives of Neurology, 65(10), 1284–1288. CrossRefPubMedGoogle Scholar
  32. Soltanlou, M., Pixner, S., & Nuerk, H. (2015). Contribution of working memory in multiplication fact network in children may shift from verbal to visuo-spatial: A longitudinal investigation. Frontiers in Psychology, 6, 1062. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Stiles, J., Paul, B., & Ark, W. (2008). The development of visuospatial processing. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 521–540). Cambridge, MA: MIT Press.Google Scholar
  34. Valenza, E., Simion, F., & Umiltà, C. (1994). Inhibition of return in newborn infants. Infant Behavior & Development, 17(3), 293–302. CrossRefGoogle Scholar
  35. Vecchi, T., Phillips, L. H., & Cornoldi, C. (2001). Individual differences in visuo-spatial working memory. In M. Denis, R. H. Logie, C. Cornoldi, M. de Vega, & J. Engelkamp (Eds.), Imagery, language and visuo-spatial thinking (pp. 29–58). Hove, England: Psychology Press.Google Scholar
  36. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonathan Buening
  • Rhonda Douglas Brown
    • 1
  1. 1.Developmental & Learning Sciences Research CenterSchool of Education, University of CincinnatiCincinnatiUSA

Personalised recommendations