Advertisement

Quantity Representation

  • Rhonda Douglas Brown
  • Vincent J. Schmithorst
Chapter

Abstract

In this chapter, we draw on evolutionary developmental psychology theory and Dehaene and colleagues’ triple-code model to describe quantity representation, which is the basis for a set of numerical abilities selected during evolution, including numerosity, which involves quickly determining the quantity of a set without counting, and ordinality, which involves recognizing that one set contains more than another without counting. We present research using innovative behavioral and cognitive neuroscience methods indicating that sensitivity to magnitude is present at birth and increases in precision into adulthood, including work investigating two quantity representation systems: the Parallel Individuation (PI) system that allows humans to precisely track a small number of individual objects through space and time; and the Approximate Number system, or number sense, that allows humans to approximate the numerosities of sets of items without using symbols. Research establishing a relationship between quantity representation and mathematics achievement during childhood and adolescence is also described. We present results from a functional Magnetic Resonance Imaging (fMRI) study demonstrating that brain activation in the inferior occipital gyrus, lingual gyrus, and bilateral intraparietal sulcus (IPS) during magnitude comparison is positively related to adolescents’ mathematics achievement, whereas deactivation of the Default Mode Network (DMN) during magnitude comparison is negatively related to adolescents’ mathematics achievement, indicating that abstract quantity representation may be foundational for the development of calculation skills.

Keywords

Quantity representation Numerosity Ordinality Parallel Individuation Approximate Number System Functional Magnetic Resonance Imaging (fMRI) Magnitude comparison Mathematics achievement Intraparietal sulcus (IPS) Default Mode Network (DMN) 

References

  1. Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54(3), 695–701.  https://doi.org/10.2307/1130057 CrossRefPubMedGoogle Scholar
  2. Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86(3), 201–221.  https://doi.org/10.1016/S0010-0277(02)00178-6 CrossRefPubMedGoogle Scholar
  3. Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388.  https://doi.org/10.1016/j.jecp.2012.09.015 CrossRefPubMedGoogle Scholar
  4. Byars, A. W., Holland, S. K., Strawsburg, R. H., Bommer, W., Dunn, R. S., Schmithorst, V. J., & Plante, E. (2002). Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. Journal of Child Neurology, 17(12), 885–890.  https://doi.org/10.1177/08830738020170122201 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.  https://doi.org/10.1371/journal.pbio.0040125 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cantrell, L., & Smith, L. B. (2013). Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition, 128(3), 331–352.  https://doi.org/10.1016/j.cognition.2013.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carey, S. (2009). The origin of concepts. New York, NY: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780195367638.001.0001 CrossRefGoogle Scholar
  8. Chen, Q., & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172.CrossRefGoogle Scholar
  9. Chu, F. W., vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212.  https://doi.org/10.1016/j.jecp.2015.01.006 CrossRefPubMedGoogle Scholar
  10. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–185.  https://doi.org/10.1017/S0140525X01003922 CrossRefPubMedGoogle Scholar
  11. Davis, N., Cannistraci, C. J., Rogers, B. P., Gatenby, J. C., Fuchs, L. S., Anderson, A. W., & Gore, J. C. (2009). Aberrant functional activation in school age children at-risk for mathematical disability: A functional imaging study of simple arithmetic skill. Neuropsychologia, 47(12), 2470–2479.  https://doi.org/10.1016/j.neuropsychologia.2009.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55.  https://doi.org/10.1016/j.tine.2013.06.001 CrossRefGoogle Scholar
  13. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42.  https://doi.org/10.1016/0010-0277(92)90049-N CrossRefPubMedGoogle Scholar
  14. Dehaene, S. (2011). The number sense: How the mind creates mathematics (Rev. ed.). New York, NY: Oxford University Press.Google Scholar
  15. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  16. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250.  https://doi.org/10.1016/S0010-9452(08)70002-9 CrossRefPubMedGoogle Scholar
  17. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506.  https://doi.org/10.1080/02643290244000239 CrossRefPubMedGoogle Scholar
  18. Edwards, L. A., Wagner, J. B., Simon, C. E., & Hyde, D. C. (2016). Functional brain organization for number processing in pre-verbal infants. Developmental Science, 19(5), 757–769.  https://doi.org/10.1111/desc.12333 CrossRefPubMedGoogle Scholar
  19. Emerson, R. W., & Cantlon, J. F. (2012a). Early math achievement and functional connectivity in the fronto-parietal network. Developmental Cognitive Neuroscience, 2(Suppl. 1), S139–S151.  https://doi.org/10.1016/j.dcn.2011.11.003 CrossRefPubMedGoogle Scholar
  20. Emerson, R. W., & Cantlon, J. F. (2012b). ‘Early math achievement and functional connectivity in the fronto-parietal network’: Erratum. Developmental Cognitive Neuroscience, 2(2), 291.Google Scholar
  21. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72.  https://doi.org/10.1016/j.jecp.2014.01.013 CrossRefPubMedGoogle Scholar
  22. Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6(5), 568–584.  https://doi.org/10.1111/1467-7687.00313 CrossRefGoogle Scholar
  23. Feigenson, L., & Carey, S. (2005). On the limits of infants’ quantification of small object arrays. Cognition, 97(3), 295–313.  https://doi.org/10.1016/j.cognition.2004.09.010 CrossRefPubMedGoogle Scholar
  24. Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150–156.  https://doi.org/10.1111/1467-9280.00427 CrossRefPubMedGoogle Scholar
  25. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.  https://doi.org/10.1016/j.tics.2004.05.002 CrossRefPubMedGoogle Scholar
  26. Féron, J., Gentaz, E., & Streri, A. (2006). Evidence of amodal representation of small numbers across visuo-tactile modalities in 5-month-old infants. Cognitive Development, 21(2), 81–92.  https://doi.org/10.1016/j.cogdev.2006.01.005 CrossRefGoogle Scholar
  27. Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148.  https://doi.org/10.1111/desc.12013 CrossRefPubMedGoogle Scholar
  28. Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.  https://doi.org/10.1016/S1364-6613(99)01424-2 CrossRefPubMedGoogle Scholar
  29. Gallistel, C. R., & Gelman, R. (2005). Mathematical cognition. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 559–588). New York, NY: Cambridge University Press.Google Scholar
  30. Geary, D. C. (1995). Reflections of evolution and culture in children's cognition: Implications for mathematical development and instruction. American Psychologist, 50(1), 24–37.  https://doi.org/10.1037/0003-066X.50.1.24 CrossRefPubMedGoogle Scholar
  31. Geary, D. C. (2005). The origin of mind: Evolution of brain, cognition, and general intelligence. Washington, DC: American Psychological Association.  https://doi.org/10.1037/10871-000 CrossRefGoogle Scholar
  32. Gilmore, C. C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8, e67374.  https://doi.org/10.1371/journal.pone.0067374 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394–406.  https://doi.org/10.1016/j.cognition.2010.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ginsburg, H., & Baroody, A. (2003). TEMA-3 examiners manual (3rd ed.). Austin, TX: PRO-ED.Google Scholar
  35. Haist, F., Wazny, J. H., Toomarian, E., & Adamo, M. (2015). Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement. Human Brain Mapping, 36(2), 804–826.  https://doi.org/10.1002/hbm.22666 CrossRefPubMedGoogle Scholar
  36. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465.  https://doi.org/10.1037/a0012682 CrossRefPubMedGoogle Scholar
  37. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116–11120.  https://doi.org/10.1073/pnas.1200196109 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665+. Retrieved from http://go.galegroup.com.proxy.libraries.uc.edu/ps/i.do?p=EAIM&sw=w&u=ucinc_main&v=2.1&it=r&id=GALE%7CA188899858&sid=summon&asid=21a895d10d909bd02722a4786fe91bee CrossRefGoogle Scholar
  39. Halberda, J., & Odic, D. (2015). The precision and internal confidence of our approximate number thoughts. In D. C. Geary, D. B. Berch, & K. M. Koepke (Eds.), Evolutionary origins and early development of number processing (pp. 305–333). San Diego, CA: Elsevier Academic Press.  https://doi.org/10.1016/B978-0-12-420133-0.00012-0 CrossRefGoogle Scholar
  40. Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in Human Neuroscience, 5, 150.  https://doi.org/10.3389/fnhum.2011.00150 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hyde, D. C., Boas, D. A., Blair, C., & Carey, S. (2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. Neuroimage, 53(2), 647–652.  https://doi.org/10.1016/j.neuroimage.2010.06.030 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hyde, D. C., & Mou, Y. (2016). Neural and behavioral signatures of core numerical abilities and early symbolic number development. In D. B. Berch, D. C. Geary, & K. Mann Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 51–77). San Diego, CA: Elsevier Academic Press.  https://doi.org/10.1016/B978-0-12-801871-2.00003-4 CrossRefGoogle Scholar
  43. Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360–371.  https://doi.org/10.1111/j.1467-7687.2010.00987.x CrossRefPubMedPubMedCentralGoogle Scholar
  44. Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biology, 6(2), e11.  https://doi.org/10.1371/journal.pbio.0060011 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–10385.  https://doi.org/10.1073/pnas.0812142106 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kobayashi, T., Hiraki, K., & Hasegawa, T. (2005). Auditory-visual intermodal matching of small numerosities in 6-month-old infants. Developmental Science, 8(5), 409–419.  https://doi.org/10.1111/j.1467-7687.2005.00429.x CrossRefPubMedGoogle Scholar
  47. Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: A fMRI study. Developmental Neuropsychology, 33(4), 447–473.  https://doi.org/10.1080/87565640802101474 CrossRefPubMedGoogle Scholar
  48. Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41(14), 1942–1958.  https://doi.org/10.1016/S0028-3932(03)00123-4 CrossRefPubMedGoogle Scholar
  49. Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13(6), 900–906.  https://doi.org/10.1111/j.1467-7687.2009.00948.x CrossRefPubMedPubMedCentralGoogle Scholar
  50. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.  https://doi.org/10.1111/j.1467-7687.2011.01080.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychological Science, 14(5), 396–401.  https://doi.org/10.1111/1467-9280.01453 CrossRefPubMedGoogle Scholar
  52. Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: Evidence against a strong association between numerical symbols and the quantities they represent. Journal of Experimental Psychology: General, 141(4), 635–641.  https://doi.org/10.1037/a0027248 CrossRefGoogle Scholar
  53. Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17(5), 714–726.  https://doi.org/10.1111/desc.12152 CrossRefPubMedGoogle Scholar
  54. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395.  https://doi.org/10.1126/science.1131295 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.  https://doi.org/10.1371/journal.pone.0023749 CrossRefPubMedPubMedCentralGoogle Scholar
  56. McKiernan, K. A., D’Angelo, B. R., Kaufman, J. N., & Binder, J. R. (2006). Interrupting the “stream of consciousness”: An fMRI investigation. Neuroimage, 29(4), 1185–1191.  https://doi.org/10.1016/j.neuroimage.2005.09.030 CrossRefPubMedGoogle Scholar
  57. Mix, K. S., Levine, S. C., & Huttenlocher, J. (1997). Numerical abstraction in infants: Another look. Developmental Psychology, 33(3), 423–428.  https://doi.org/10.1037/0012-1649.33.3.423 CrossRefPubMedGoogle Scholar
  58. Moore, D., Benenson, J., Reznick, J. S., Peterson, M., & Kagan, J. (1987). Effect of auditory numerical information on infants’ looking behavior: Contradictory evidence. Developmental Psychology, 23(5), 665–670.  https://doi.org/10.1037/0012-1649.23.5.665 CrossRefGoogle Scholar
  59. Mou, Y., & vanMarle, K. (2014). Two core systems of numerical representation in infants. Developmental Review, 34(1), 1–25.  https://doi.org/10.1016/j.dr.2013.11.001 CrossRefGoogle Scholar
  60. Park, J., Li, R., & Brannon, E. M. (2014). Neural connectivity patterns underlying symbolic number processing indicate mathematical achievement in children. Developmental Science, 17(2), 187–202.  https://doi.org/10.1111/desc.12114 CrossRefPubMedGoogle Scholar
  61. Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41.  https://doi.org/10.1016/j.cognition.2010.03.012 CrossRefPubMedGoogle Scholar
  62. Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614.  https://doi.org/10.1111/j.1467-9280.2008.02130.x CrossRefPubMedGoogle Scholar
  63. Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30(2), 344–357.  https://doi.org/10.1111/j.2044-835X.2011.02048.x CrossRefPubMedGoogle Scholar
  64. Sato, J. R., Salum, G. A., Gadelha, A., Picon, F. A., Pan, P. M., Vieira, G., … Jackowski, A. P. (2014). Age effects on the default mode and control networks in typically developing children. Journal of Psychiatric Research, 58, 89–95.  https://doi.org/10.1016/j.jpsychires.2014.07.004 CrossRefPubMedGoogle Scholar
  65. Sharon, T., & Wynn, K. (1998). Individuation of actions from continuous motion. Psychological Science, 9(5), 357–362.  https://doi.org/10.1111/1467-9280.00068 CrossRefGoogle Scholar
  66. Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144–150.  https://doi.org/10.1111/cdep.12077 CrossRefGoogle Scholar
  67. Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210(4473), 1033–1035.  https://doi.org/10.1126/science.7434014 CrossRefPubMedGoogle Scholar
  68. Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222(4620), 179–181.  https://doi.org/10.1126/science.6623069 CrossRefPubMedGoogle Scholar
  69. Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36(2), 97–127.  https://doi.org/10.1016/0010-0277(90)90001-Z CrossRefPubMedGoogle Scholar
  70. Starr, A., & Brannon, E. M. (2015). Evolutionary and developmental continuities in numerical cognition. In D. C. Geary, D. B. Berch, & K. M. Koepke (Eds.), Evolutionary origins and early development of number processing (pp. 123–144). San Diego, CA: Elsevier Academic Press.  https://doi.org/10.1016/B978-0-12-420133-0.00005-3 CrossRefGoogle Scholar
  71. Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18116–18120.  https://doi.org/10.1073/pnas.1302751110 CrossRefPubMedPubMedCentralGoogle Scholar
  72. van Loosbroek, E., & Smitsman, A. W. (1990). Visual perception of numerosity in infancy. Developmental Psychology, 26(6), 916–922.  https://doi.org/10.1037/0012-1649.26.6.911.b CrossRefGoogle Scholar
  73. vanMarle, K. (2013). Infants use different mechanisms to make small and large number ordinal judgments. Journal of Experimental Child Psychology, 114(1), 102–110.  https://doi.org/10.1016/j.jecp.2012.04.007 CrossRefPubMedGoogle Scholar
  74. vanMarle, K., Chu, F., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17(4), 492–505. Retrieved from http://dx.doi.org.proxy.libraries.uc.edu/10.1111/desc.12143 CrossRefGoogle Scholar
  75. vanMarle, K., & Wynn, K. (2011). Tracking and quantifying objects and non-cohesive substances. Developmental Science, 14(3), 502–515.  https://doi.org/10.1111/j.1467-7687.2010.00998.x CrossRefGoogle Scholar
  76. Wilcox, T., Haslup, J. A., & Boas, D. A. (2010). Dissociation of processing of featural and spatiotemporal information in the infant cortex. Neuroimage, 53(4), 1256–1263.  https://doi.org/10.1016/j.neuroimage.2010.06.064 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wilcox, T., Stubbs, J., Hirshkowitz, A., & Boas, D. A. (2012). Functional activation of the infant cortex during object processing. Neuroimage, 62(3), 1833–1840.  https://doi.org/10.1016/j.neuroimage.2012.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wood, J. N., & Spelke, E. S. (2005). Infants’ enumeration of actions: Numerical discrimination and its signature limits. Developmental Science, 8(2), 173–181.  https://doi.org/10.1111/j.1467-7687.2005.00404.x CrossRefPubMedGoogle Scholar
  79. Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Itasca, IL: Riverside Publishing.Google Scholar
  80. Wynn, K. (1996). Infants’ individuation and enumeration of actions. Psychological Science, 7(3), 164–169.  https://doi.org/10.1111/j.1467-9280.1996.tb00350.x CrossRefGoogle Scholar
  81. Wynn, K., Bloom, P., & Chiang, W. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83(3), B55–B62.  https://doi.org/10.1016/S0010-0277(02)00008-2 CrossRefPubMedGoogle Scholar
  82. Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89(1), B15–B25.  https://doi.org/10.1016/S0010-0277(03)00050-7 CrossRefPubMedGoogle Scholar
  83. Xu, F., & Arriaga, R. I. (2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25(1), 103–108.  https://doi.org/10.1348/026151005X90704 CrossRefGoogle Scholar
  84. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11.  https://doi.org/10.1016/S0010-0277(99)00066-9 CrossRefPubMedGoogle Scholar
  85. Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88–101.  https://doi.org/10.1111/j.1467-7687.2005.00395.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rhonda Douglas Brown
    • 1
  • Vincent J. Schmithorst
  1. 1.Developmental & Learning Sciences Research CenterSchool of Education, University of CincinnatiCincinnatiUSA

Personalised recommendations