Advertisement

Brain Development and Cognitive Neuroscience Research Methods

  • Rhonda Douglas Brown
Chapter

Abstract

In this chapter, I provide an overview of brain development, structure, and function as background for interpreting neuroscience research on mathematical cognitive development. The formation of the brain throughout prenatal development is described and the location and functions of the four major lobes of the brain and the major sulci and gyri are identified. I also explain the structure and functioning of neurons. Brain growth and regionally specific developmental changes in gray and white matter are detailed. Then, I describe cognitive neuroscience research methods including lesion studies, which measure changes in cognitive function related to brain injury, and Transcranial Magnetic Stimulation (TMS), which induces temporary lesions. Cutting-edge neuroimaging techniques that have provided opportunities for studying the living and working brain are explained, including functional Magnetic Resonance Imaging (fMRI), which measures changes in blood flow, Diffusion Tensor Imaging (DTI), which measures white matter connectivity patterns, Event-Related Potentials (ERP), which measures electrical activity, and functional Near-Infrared Spectroscopy (fNIRS), which uses light to measure changes in blood flow. I conclude by discussing advantages and limitations of using these cognitive neuroscience research methods. Despite their limitations, these methods provide us with tools for discovering how knowledge and thought are embodied in our brains.

Keywords

Brain development Lobes Gyri Sulci Lesion studies Transcranial Magnetic Stimulation (TMS) Functional Magnetic Resonance Imaging (fMRI) Diffusion Tensor Imaging (DTI) Event-Related Potentials (ERP) Functional Near-Infrared Spectroscopy (fNIRS) 

References

  1. Afifi, A. K., & Bergman, R. A. (2005). Functional neuroanatomy: Text and atlas (2nd ed.). New York, NY: McGraw-Hill Health Professions Division.Google Scholar
  2. Amso, D., & Casey, B. J. (2006). Beyond what develops when: Neuroimaging may inform how cognition changes with development. Current Directions in Psychological Science, 15(1), 24–29. https://doi.org/10.1111/j.0963-7214.2006.00400.x CrossRefGoogle Scholar
  3. Basser, P. J. (1997). New histological and physiological stains derived from diffusion-tensor MR images. Annals of the New York Academy of Sciences, 820, 123–138. https://doi.org/10.1111/j.1749-6632.1997.tb46192.x CrossRefPubMedGoogle Scholar
  4. Bertenthal, B. I., & Campos, J. J. (1987). New directions in the study of early experience. Child Development, 58(3), 560–567. https://doi.org/10.2307/1130198 CrossRefPubMedGoogle Scholar
  5. Brown, R. D., & Chiu, C.-Y. P. (2006). Neural correlates of memory development and learning: Combining neuroimaging and behavioral measures to understand cognitive and developmental processes. Developmental Neuropsychology, 29(2), 279–291. https://doi.org/10.1207/s15326942dn2902_1 CrossRefPubMedGoogle Scholar
  6. Byars, A. W., Holland, S. K., Strawsburg, R. H., Bommer, W., Dunn, R. S., Schmithorst, V. J., & Plante, E. (2002). Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. Journal of Child Neurology, 17(12), 885–890. https://doi.org/10.1177/08830738020170122201 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cappelletti, M., Butterworth, B., & Kopelman, M. (2001). Spared numerical abilities in a case of semantic dementia. Neuropsychologia, 39(11), 1224–1239. https://doi.org/10.1016/S0028-3932(01)00035-5 CrossRefPubMedGoogle Scholar
  8. Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54(1–3), 241–257. https://doi.org/10.1016/S0301-0511(00)00058-2 CrossRefPubMedGoogle Scholar
  9. Chance, B., Zhuang, Z., UnAh, C., Alter, C., & Lipton, L. (1993). Cognition-activated low frequency modulation of light absorption in human brain. Proceedings of the National Academy of Sciences of the United States of America, 90, 3770–3774.CrossRefGoogle Scholar
  10. Changeux, J., & Dehaene, S. (1989). Neuronal models of cognitive functions. Cognition, 33(1–2), 63–109. https://doi.org/10.1016/0010-0277(89)90006-1 CrossRefPubMedGoogle Scholar
  11. Cipolotti, L., & Butterworth, B. (1995). Toward a multiroute model of number processing: Impaired number transcoding with preserved calculation skills. Journal of Experimental Psychology: General, 124(4), 375–390. https://doi.org/10.1037/0096-3445.124.4.375 CrossRefGoogle Scholar
  12. Clayden, J. D., Jentschke, S., Muñoz, M., Cooper, J. M., Chadwick, M. J., Banks, T., … Vargha-Khadem, F. (2012). Normative development of white matter tracts: Similarities and differences in relation to age, gender, and intelligence. Cerebral Cortex, 22(8), 1738–1747. https://doi.org/10.1093/cercor/bhr243 CrossRefPubMedGoogle Scholar
  13. Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical and fMRI study. Neuropsychologia, 38(10), 1426–1440. https://doi.org/10.1016/S0028-3932(00)00038-5 CrossRefPubMedGoogle Scholar
  14. Dagenbach, D., & McCloskey, M. (1992). The organization of arithmetic facts in memory: Evidence from a brain-damaged patient. Brain and Cognition, 20(2), 345–366. https://doi.org/10.1016/0278-2626(92)90026-I CrossRefPubMedGoogle Scholar
  15. Dehaene, S. (2011). The number sense: How the mind creates mathematics (Rev. ed.). New York, NY: Oxford University Press.Google Scholar
  16. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250. https://doi.org/10.1016/S0010-9452(08)70002-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., … Le Bihan, D. (1998). Imaging unconscious semantic priming. Nature, 395, 597–600. https://doi.org/10.1038/26967 CrossRefPubMedGoogle Scholar
  18. Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33(4), 697–710. https://doi.org/10.1016/S0010-9452(08)70727-5 CrossRefPubMedGoogle Scholar
  19. Dennis, E. L., Jahanshad, N., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I. B., … Thompson, P. M. (2014). Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging. Human Brain Mapping, 35(4), 1790–1800. https://doi.org/10.1002/hbm.22292 CrossRefPubMedGoogle Scholar
  20. Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. E., & Wandell, B. (2005). Children’s reading performance is correlated with white matter structure measured by tensor imaging. Cortex, 41(3), 354–363. https://doi.org/10.1016/S0010-9452(08)70272-7 CrossRefPubMedGoogle Scholar
  21. Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J.-F., Cointepas, Y., Duchesnay, E., … Hertz-Pannier, L. (2008). Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29(1), 14–27. https://doi.org/10.1002/hbm.20363 CrossRefPubMedGoogle Scholar
  22. Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child & Adolescent Psychiatry, 40(9), 1012–1020. https://doi.org/10.1097/00004583-200109000-00009 CrossRefGoogle Scholar
  23. Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York, NY: Basic Books.Google Scholar
  24. Eliot, L. (1999). What's going on in there?: How the brain and mind develop in the first five years of life. New York, NY: Bantam Books.Google Scholar
  25. Emerson, R. W. (1844). Nature. In A. R. Ferguson & J. F. Carr (Eds.), The collected works of Ralph Waldo Emerson: Vol. III. Essays: Second series (1984) (pp. 106–107). Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  26. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317. https://doi.org/10.1038/3305 CrossRefPubMedGoogle Scholar
  27. Fox, S. E., Levitt, P., & Nelson, C. I. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28–40. https://doi.org/10.1111/j.1467-8624.2009.01380.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. F. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863. https://doi.org/10.1038/13158 CrossRefPubMedGoogle Scholar
  29. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Lui, H., … Castellanos, F. X. (1999). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(4), 571–588. https://doi.org/10.1016/S0278-5846(99)00017-2 CrossRefGoogle Scholar
  30. Giedd, J. N., Raznahan, A., Alexander-Bloch, A., Schmitt, E., Gogtay, N., & Rapoport, J. L. (2015). Child Psychiatry Branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40(1), 43–49. https://doi.org/10.1038/npp.2014.236 CrossRefPubMedGoogle Scholar
  31. Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., … Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22(11), 2478–2485. https://doi.org/10.1093/cercor/bhr327 CrossRefPubMedGoogle Scholar
  32. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.CrossRefGoogle Scholar
  33. Grafman, J., Kampen, D., Rosenberg, J., Salazar, A. M., & Boller, F. (1989). The progressive breakdown of number processing and calculation ability: A case study. Cortex, 25(1), 121–133. https://doi.org/10.1016/S0010-9452(89)80012-7 CrossRefPubMedGoogle Scholar
  34. Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539–559. https://doi.org/10.2307/1130197 CrossRefPubMedGoogle Scholar
  35. Groeschel, S., Vollmer, B., King, M. D., & Connelly, A. (2010). Developmental changes in cerebral grey and white matter volume from infancy to adulthood. International Journal of Developmental Neuroscience, 28(6), 481–489. https://doi.org/10.1016/j.ijdevneu.2010.06.004 CrossRefPubMedGoogle Scholar
  36. Hoshi, Y., & Tamura, M. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity. Journal of Applied Physiology, 75(4), 1842–1846.CrossRefGoogle Scholar
  37. Hüppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11(6), 489–497. https://doi.org/10.1016/j.siny.2006.07.006 CrossRefPubMedGoogle Scholar
  38. Huttenlocher, P. R. (1994). Synaptogenesis in human cerebral cortex. In G. Dawson & K. W. Fischer (Eds.), Human behavior and the developing brain (pp. 137–152). New York, NY: Guilford Press.Google Scholar
  39. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Developmental anatomy of prefrontal cortex. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 69–83). Baltimore, MD: Paul H. Brookes.Google Scholar
  40. Kappenman, E. S., & Luck, S. J. (2012). ERP components: The ups and downs of brainwave recordings. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 3–30). New York, NY: Oxford University Press.Google Scholar
  41. Kato, T., Kamei, A., Takashima, S., & Ozaki, T. (1993). Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 13(3), 516–520. https://doi.org/10.1038/jcbfm.1993.66 CrossRefGoogle Scholar
  42. Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., … Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. The Journal of Neuroscience, 28(47), 12176–12182. https://doi.org/10.1523/JNEUROSCI.3479-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kolb, B., & Fantie, B. D. (2009). Development of the child's brain and behavior. In C. R. Reynolds & E. Fletcher-Janzen (Eds.), Handbook of clinical child neuropsychology (3rd ed., pp. 19–46). New York, NY: Springer Science + Business Media. https://doi.org/10.1007/978-0-387-78867-8_2 CrossRefGoogle Scholar
  44. Kroeger, L. (2012). Neural correlates of error detection in math facts (Order No. 3554345). Available from ProQuest Dissertations & Theses Global (1315765851). Retrieved from https://search-proquest-com.proxy.libraries.uc.edu/docview/1315765851?accountid=2909
  45. Kucian, K., Ashkenazi, S. S., Hänggi, J., Rotzer, S., Jäncke, L., Martin, E., & von Aster, M. (2014). Developmental dyscalculia: A dysconnection syndrome? Brain Structure & Function, 219(1), 1721–1733. https://doi.org/10.1007/s00429-013-0597-4 CrossRefGoogle Scholar
  46. Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13–F21. https://doi.org/10.1111/j.1467-7687.2006.00468.x CrossRefPubMedGoogle Scholar
  47. Lagercrantz, H. (2016). Infant brain development: Formation of the mind and the emergence of consciousness. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-44845-9 CrossRefGoogle Scholar
  48. Lampl, Y., Eshel, Y., Gilad, R., & Sarova-Pinhas, I. (1994). Selective acalculia with sparing of the subtraction process in a patient with left parietotemporal hemorrhage. Neurology, 44(9), 1759–1761. https://doi.org/10.1212/WNL.44.9.1759 CrossRefPubMedGoogle Scholar
  49. Le Bihan, D. (1991). Molecular diffusion nuclear magnetic resonance imaging. Magnetic Resonance Quarterly, 7, 1–30.PubMedGoogle Scholar
  50. Le Bihan, D., & Breton, E. (1985). Imagerie de diffusion in vivo par résonance magnétique nucléaire. Comptes Rendus of the Academy of Sciences Paris, T.301(Série II), 1109–1112.Google Scholar
  51. Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13, 534–546. https://doi.org/10.1002/jmri.1076 CrossRefPubMedGoogle Scholar
  52. Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41(14), 1942–1958. https://doi.org/10.1016/S0028-3932(03)00123-4 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lenroot, R. K., & Giedd, J. N. (2007). The structural development of the human brain as measured longitudinally with magnetic resonance imaging. In D. Coch, K. W. Fischer, & G. Dawson (Eds.), Human behavior, learning, and the development brain: Typical development (pp. 50–73). New York, NY: Guilford Press.Google Scholar
  54. Lenroot, R. K., & Giedd, J. N. (2010). Sex differences in the adolescent brain. Brain and Cognition, 72(1), 46–55. https://doi.org/10.1016/j.bandc.2009.10.008 CrossRefPubMedGoogle Scholar
  55. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., … Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36(4), 1065–1073. Retrieved from http://dx.doi.org.proxy.libraries.uc.edu/10.1016/j.neuroimage.2007.03.053 CrossRefGoogle Scholar
  56. Lim, S., Han, C. E., Uhlhaas, P. J., & Kaiser, M. (2015). Preferential detachment during human brain development: Age- and sex-specific structural connectivity in diffusion tensor imaging (DTI) data. Cerebral Cortex, 25(6), 1477–1489. https://doi.org/10.1093/cercor/bht333 CrossRefPubMedGoogle Scholar
  57. Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., & Casey, B. J. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16(4), 553–560. https://doi.org/10.1093/cercor/bhj003 CrossRefPubMedGoogle Scholar
  58. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
  59. Luck, S. J. (2012). Event-related potentials. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 1. Foundations, planning, measures, and psychometrics (pp. 523–546). Washington, DC: American Psychological Association. https://doi.org/10.1037/13619-028 CrossRefGoogle Scholar
  60. Luck, S. J., Vogel, E. K., & Shapiro, K. L. (1996). Word meanings can be accessed but not reported during the attentional blink. Nature, 383, 616–618. https://doi.org/10.1038/383616a0 CrossRefPubMedGoogle Scholar
  61. Mabbott, D. J., Noseworthy, M., Bouffet, E., Laughlin, S., & Rockel, C. (2006). White matter growth as a mechanism of cognitive development in children. Neuroimage, 33(3), 936–946. https://doi.org/10.1016/j.neuroimage.2006.07.024 CrossRefPubMedGoogle Scholar
  62. Mabbott, D. J., Rovet, J., Noseworthy, M. D., Smith, M. L., & Rockel, C. (2009). The relations between white matter and declarative memory in older children and adolescents. Brain Research, 1294, 80–90. https://doi.org/10.1016/J.BRAINRES.2009.07.046 CrossRefPubMedGoogle Scholar
  63. Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y., & Koizumi, H. (1995). Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Medical Physics, 22(12), 1997–2005. https://doi.org/10.1118/1.597496 CrossRefPubMedGoogle Scholar
  64. Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., … Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16480–16485. https://doi.org/10.1073/pnas.1117943109 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227–1233. https://doi.org/10.1162/0898929041920441 CrossRefPubMedGoogle Scholar
  66. Nelson, C. A., & Bloom, F. E. (1997). Child development and neuroscience. Child Development, 68(5), 970–987. https://doi.org/10.2307/1132045 CrossRefPubMedGoogle Scholar
  67. Nelson, C. A., de Haan, M., & Thomas, K. M. (2006). Neuroscience of cognitive development: The role of experience and the developing brain. Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
  68. Ogawa, S., Lee, T., Kay, A., & Tank, D. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872. Retrieved from http://www.jstor.org.proxy.libraries.uc.edu/stable/2356515
  69. Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232–237. https://doi.org/10.1016/S0959-4388(00)00081-7 CrossRefPubMedGoogle Scholar
  70. Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? Brain and Cognition, 72(1), 26–35. https://doi.org/10.1016/j.bandc.2009.06.002 CrossRefPubMedGoogle Scholar
  71. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54(3), 255–266. https://doi.org/10.1016/S0361-9230(00)00434-2 CrossRefPubMedGoogle Scholar
  72. Pesenti, M., Seron, X., & Van Der Linden, M. (1994). Selective impairment as evidence for mental organisation of arithmetical facts: BB, a case of preserved subtraction? Cortex, 30(4), 661–671. https://doi.org/10.1016/S0010-9452(13)80242-0 CrossRefPubMedGoogle Scholar
  73. Pesenti, M., Thioux, M., Samson, D., Bruyer, R., & Seron, X. (2000). Number processing and calculation in a case of visual agnosia. Cortex, 36(3), 377–400. https://doi.org/10.1016/S0010-9452(08)70848-7 CrossRefPubMedGoogle Scholar
  74. Qiu, A., Mori, S., & Miller, M. I. (2015). Diffusion tensor imaging for understanding brain development in early life. Annual Review of Psychology, 66, 853–876. https://doi.org/10.1146/annurev-psych-010814-015340 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Richmond, S., Johnson, K. A., Seal, M. L., Allen, N. B., & Whittle, S. (2016). Development of brain networks and relevance of environmental and genetic factors: A systematic review. Neuroscience & Biobehavioral Reviews, 71, 215–239. https://doi.org/10.1016/j.neubiorev.2016.08.024 CrossRefGoogle Scholar
  76. Sack, A. T., Kohler, A., Bestmann, S., Linden, D. J., Dechent, P., Goebel, R., & Baudewig, J. (2007). Imaging the brain activity changes underlying impaired visuospatial judgments: Simultaneous fMRI, TMS and behavioral studies. Cerebral Cortex, 17(12), 2841–2852. https://doi.org/10.1093/cercor/bhm013 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schmithorst, V. J. (2009). Developmental sex differences in the relation of neuroanatomical connectivity to intelligence. Intelligence, 37(2), 164–173. https://doi.org/10.1016/j.intell.2008.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schmithorst, V. J., Holland, S. K., & Dardzinski, B. J. (2008). Developmental differences in white matter architecture between boys and girls. Human Brain Mapping, 29(6), 696–710. https://doi.org/10.1002/hbm.20431 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2002). Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: A cross-sectional diffusion-tensor MR imaging study. Radiology, 222(1), 212–218. https://doi.org/10.1148/radiol.2221010626 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping, 26, 139–147. https://doi.org/10.1002/hbm.20149 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Shepherd, G. M. (2004). The synaptic organization of the brain (5th ed.). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  82. Sowell, E. R., Thompson, P. M., Holmes, C. J., Batth, R., Jernigan, T. L., & Toga, A. W. (1999). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage, 9, 587–597. https://doi.org/10.1006/nimg.1999.0436 CrossRefPubMedGoogle Scholar
  83. Steinhauer, K. (2014). Event-related potentials (ERPs) in second language research: A brief introduction to the technique, a selected review, and an invitation to reconsider critical periods in L2. Applied Linguistics, 35(4), 393–417. https://doi.org/10.1093/applin/amu028 CrossRefGoogle Scholar
  84. Stiles, J. (2008). The fundamentals of brain development: Integrating nature and nurture. Cambridge, MA: Harvard University Press.Google Scholar
  85. Stiles, J. (2009). On genes, brains, and behavior: Why should developmental psychologists care about brain development? Child Development Perspectives, 3(3), 196–202. https://doi.org/10.1111/j.1750-8606.2009.00106.x CrossRefGoogle Scholar
  86. Szaflarski, J. P., Schmithorst, V. J., Altaye, M., Byars, A. W., Ret, J., Plante, E., & Holland, S. K. (2006). A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old. Annals of Neurology, 59(5), 796–807. https://doi.org/10.1002/ana.20817 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York, NY: Thieme.Google Scholar
  88. Tamnes, C. K., Østby, Y., Walhovd, K. B., Westlye, L. T., Due-Tønnessen, P., & Fjell, A. M. (2010). Intellectual abilities and white matter microstructure in development: A diffusion tensor imaging study. Human Brain Mapping, 31, 1609–1625. https://doi.org/10.1002/hbm.20962 CrossRefPubMedGoogle Scholar
  89. Tau, G. Z., & Peterson, B. S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147–168. https://doi.org/10.1038/npp.2009.115 CrossRefPubMedGoogle Scholar
  90. Thevenaz, P., Ruttimann, U. E., & Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing, 7(1), 27–41. https://doi.org/10.1109/83.650848 CrossRefPubMedGoogle Scholar
  91. Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404, 190–193. https://doi.org/10.1038/35004593 CrossRefPubMedGoogle Scholar
  92. Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. Neuroimage, 49(1), 63–70. https://doi.org/10.1016/j.neuroimage.2009.08.016 CrossRefPubMedGoogle Scholar
  93. Twardosz, S. (2007). Exploring neuroscience: A guide for getting started. Early Education and Development, 18(2), 171–182. https://doi.org/10.1080/10409280701280516 CrossRefGoogle Scholar
  94. van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication: Implications for the organisation of arithmetical facts. Cortex, 37(3), 363–388. https://doi.org/10.1016/S0010-9452(08)70579-3 CrossRefPubMedGoogle Scholar
  95. van Harskamp, N. J., Rudge, P., & Cipolotti, L. (2002). Are multiplication facts implemented by the left supramarginal and angular gyri? Neuropsychologia, 40(11), 1786–1793. https://doi.org/10.1016/S0028-3932(02)00036-2 CrossRefPubMedGoogle Scholar
  96. Villringer, A., Planck, J., Hock, C., Schleinkofer, L., & Dirnagl, U. (1993). Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults. Neuroscience Letters, 154(1–2), 101–104. https://doi.org/10.1016/0304-3940(93)90181-J CrossRefGoogle Scholar
  97. Wang, Y., Adamson, C., Yuan, W., Altaye, M., Rajagopal, A., Byars, A. W., & Holland, S. K. (2012). Sex differences in white matter development during adolescence: A DTI study. Brain Research, 1478, 1–15. https://doi.org/10.1016/J.BRAINRES.2012.08.038 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Whalen, J., McCloskey, M., Lesser, R. P., & Gordon, B. (1997). Localizing arithmetic processes in the brain: Evidence from a transient deficit during cortical stimulation. Journal of Cognitive Neuroscience, 9(3), 409–417. https://doi.org/10.1162/jocn.1997.9.3.409 CrossRefPubMedGoogle Scholar
  99. Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28(3), 228–237. https://doi.org/10.1002/hbm.20273 CrossRefPubMedGoogle Scholar
  100. Yakovlev, P. I., & Lecours, A. (1967). The myelogenetic cycles of regional maturation in the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–65). Oxford, England: Blackwell.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rhonda Douglas Brown
    • 1
  1. 1.Developmental & Learning Sciences Research CenterSchool of Education, University of CincinnatiCincinnatiUSA

Personalised recommendations