Theories for Understanding the Neuroscience of Mathematical Cognitive Development
Abstract
Throughout history, humans have invented and used mathematics to solve meaningful problems critical to survival and prosperity. To advance our understanding of mathematical cognitive development and achievement, it is important to place research within theoretical frameworks that allow us to interpret and apply results. In this chapter, I discuss evolutionary developmental psychology as a meta-theory for considering important questions relevant to understanding neuroscience research on mathematical cognitive development. Then, I use a developmental systems approach to describe how genetics, neural activity, and experiences in environmental niches dynamically interact in the development of evolved probabilistic cognitive mechanisms. As an example, I describe biologically primary mathematical abilities that may have been selected for in evolution to solve recurrent problems, passed on via genetics, and instantiated in human brain development. The process of their development into biologically secondary mathematical abilities, which are cultural inventions that build upon biologically primary abilities, is then described. I present Dehaene and colleagues’ triple-code model of numerical processing as the predominant neuroscience-based theory of mathematical cognition. I conclude by arguing that there is a place for neuroscience in the field of cognitive development and advocating for the integration of scientific findings across levels of analysis.
Keywords
Mathematics Evolutionary developmental psychology Developmental systems approach Biologically primary abilities Biologically secondary abilities Triple-code model of numerical processing NeuroscienceReferences
- Alferink, L. A., & Farmer-Dougan, V. (2010). Brain-(not) based education: Dangers of misunderstanding and misapplication of neuroscience research. Exceptionality, 18(1), 42–52. https://doi.org/10.1080/09362830903462573 CrossRefGoogle Scholar
- America COMPETES Act of 2007, Pub. L. No. 110-69 (2007).Google Scholar
- Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820–1828.CrossRefGoogle Scholar
- Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. Neuroreport, 16(6), 1769–1773.CrossRefGoogle Scholar
- Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences, 6(12), 511–516. https://doi.org/10.1016/S1364-6613(02)02040-5 CrossRefPubMedPubMedCentralGoogle Scholar
- Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382–2393. https://doi.org/10.1016/j.neuroimage.2010.10.009 CrossRefPubMedGoogle Scholar
- Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: A test of three verification models. Memory & Cognition, 9(2), 185–196. https://doi.org/10.3758/BF03202334 CrossRefGoogle Scholar
- Baltes, P. B., Reuter-Lorenz, P. A., & Rösler, F. (2006). Lifespan development and the brain: The perspective of biocultural co-constructivism. New York, NY: Cambridge University Press. https://doi.org/10.1017/CBO9780511499722 CrossRefGoogle Scholar
- Berch, D. B., & Mazzocco, M. M. (2007). Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities. Baltimore, MD: Paul H. Brookes Publishing.Google Scholar
- Bjorklund, D. F. (1997a). In search of a metatheory for cognitive development (or, Piaget is dead and I don’t feel so good myself). Child Development, 68(1), 144–148. https://doi.org/10.2307/1131932 CrossRefPubMedGoogle Scholar
- Bjorklund, D. F. (1997b). The role of immaturity in human development. Psychological Bulletin, 122(2), 153–169. https://doi.org/10.1037/0033-2909.122.2.153 CrossRefPubMedGoogle Scholar
- Bjorklund, D. F. (2003). Evolutionary psychology from a developmental systems perspective: Comment on Lickliter and Honeycutt (2003). Psychological Bulletin, 129(6), 836–841. https://doi.org/10.1037/0033-2909.129.6.836 CrossRefPubMedGoogle Scholar
- Bjorklund, D. F. (2006). Mother knows best: Epigenetic inheritance, maternal effects, and the evolution of human intelligence. Developmental Review, 26(2), 213–242. https://doi.org/10.1016/j.dr.2006.02.007 CrossRefGoogle Scholar
- Bjorklund, D. F. (2017). Prepared is not preformed: Commentary on Witherington and Lickliter. Human Development, 59(4), 235–241. https://doi.org/10.1159/000452289 CrossRefGoogle Scholar
- Bjorklund, D. F., & Ellis, B. J. (2014). Children, childhood, and development in evolutionary perspective. Developmental Review, 34(3), 225–264. https://doi.org/10.1016/j.dr.2014.05.005 CrossRefGoogle Scholar
- Bjorklund, D. F., Ellis, B. J., & Rosenberg, J. S. (2007). Evolved probabilistic cognitive mechanisms: An evolutionary approach to gene × environment × development interactions. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 35, pp. 1–36). San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
- Bjorklund, D. F., & Kipp, K. (1996). Parental investment theory and gender differences in the evolution of inhibition mechanisms. Psychological Bulletin, 120(2), 163–188. https://doi.org/10.1037/0033-2909.120.2.163 CrossRefPubMedGoogle Scholar
- Bjorklund, D. F., & Pellegrini, A. D. (2002). The origins of human nature: Evolutionary developmental psychology. Washington, DC: American Psychological Association. https://doi.org/10.1037/10425-000 CrossRefGoogle Scholar
- Bouchard, T. J., Lykken, D. T., Tellegen, A., & McGue, M. (1996). Genes, drives, environment, and experience: EPD theory revised. In C. P. Benbow & D. J. Lubinski (Eds.), Intellectual talent: Psychometric and social issues (pp. 5–43). Baltimore, MD: Johns Hopkins University Press.Google Scholar
- Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123, 600–612. https://doi.org/10.1037/rev0000025 CrossRefPubMedGoogle Scholar
- Bronfenbrenner, U., & Morris, P. A. (2006). The bioecological model of human development. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: Theoretical models of human development (Vol. 1, 6th ed., pp. 793–828). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
- Brown, R. D., & Bjorklund, D. F. (1998). The biologizing of cognition, development, and education: Approach with cautious enthusiasm. Educational Psychology Review, 10(3), 355–373. https://doi.org/10.1023/A:1022149913184 CrossRefGoogle Scholar
- Brown, R. D., & Chiu, C. P. (2006). Neural correlates of memory development and learning: Combining neuroimaging and behavioral measures to understand cognitive and developmental processes. Developmental Neuropsychology, 29(2), 279–291. https://doi.org/10.1207/s15326942dn2902_1 CrossRefGoogle Scholar
- Bruer, J. T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26(8), 4–16. https://doi.org/10.2307/1176301 CrossRefGoogle Scholar
- Byars, A. W., Holland, S. K., Strawsburg, R. H., Bommer, W., Dunn, R. S., Schmithorst, V. J., & Plante, E. (2002). Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. Journal of Child Neurology, 17(12), 885–890. https://doi.org/10.1177/08830738020170122201 CrossRefPubMedPubMedCentralGoogle Scholar
- Byrnes, J. P., & Fox, N. A. (1998a). Minds, brains, and education: Part II. Responding to the commentaries. Educational Psychology Review, 10(4), 431–439. https://doi.org/10.1023/A:1022897519643 CrossRefGoogle Scholar
- Byrnes, J. P., & Fox, N. A. (1998b). The educational relevance of research in cognitive neuroscience. Educational Psychology Review, 10(3), 297–342. https://doi.org/10.1023/A:1022145812276 CrossRefGoogle Scholar
- Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British Journal of Developmental Psychology, 3(1), 21–29. https://doi.org/10.1111/j.2044-835X.1985.tb00951.x CrossRefGoogle Scholar
- Charette, R. N. (2013). The STEM crisis is a myth. Institute of Electrical and Electronics Engineers Spectrum. https://doi.org/10.1109/MSPEC.2013.6587189
- Coch, D., Michlovitz, S. A., Ansari, D., & Baird, A. (2009). Building mind, brain, and education connections: The view from the upper valley. Mind, Brain, and Education, 3(1), 27–33. https://doi.org/10.1111/j.1751-228X.2008.01050.x CrossRefGoogle Scholar
- Cohen, L., Dehaene, S., Cohochon, F., Lehericy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical, and fMRI study. Neuropsychologia, 38, 1426–1440. Retrieved from http://dx.doi.org.proxy.libraries.uc.edu/10.1016/S0028-3932(00)00038-5 CrossRefGoogle Scholar
- Cole, M. (1990). Cognitive development and formal schooling: The evidence from cross-cultural research. In L. C. Moll (Ed.), Vygotsky and education (pp. 319–348). New York, NY: Cambridge University Press.Google Scholar
- Crone, E. A., Poldrack, R. A., & Durston, S. (2010). Challenges and methods in developmental neuroimaging. Human Brain Mapping, 31(6), 835–837. https://doi.org/10.1002/hbm.21053 CrossRefPubMedGoogle Scholar
- Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. https://doi.org/10.1016/0010-0277(92)90049-N CrossRefPubMedPubMedCentralGoogle Scholar
- Dehaene, S. (2011). The number sense: How the mind creates mathematics (Rev. ed.). New York, NY: Oxford University Press.Google Scholar
- Dehaene, S., & Cohen, L. (1991). Two mental calculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29(11), 1045–1074. https://doi.org/10.1016/0028-3932(91)90076-K CrossRefPubMedPubMedCentralGoogle Scholar
- Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
- Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250. https://doi.org/10.1016/S0010-9452(08)70002-9 CrossRefPubMedPubMedCentralGoogle Scholar
- Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. https://doi.org/10.1016/S0010-0277(00)00123-2 CrossRefPubMedGoogle Scholar
- Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. https://doi.org/10.1080/02643290244000239 CrossRefPubMedPubMedCentralGoogle Scholar
- Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison: A PET study. Neuropsychologia, 34(11), 1097–1106. https://doi.org/10.1016/0028-3932(96)00027-9 CrossRefPubMedGoogle Scholar
- Devlin, K. (2005, May). Street mathematics [Web log post]. Retrieved from http://www.maa.org/external_archive/devlin/devlin_05_05.html
- Donaldson, M. (1978). Children’s minds. New York, NY: Norton.Google Scholar
- Ford, D. H., & Lerner, R. M. (1992). Developmental systems theory: An integrative approach. Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
- Friberg, J. (2008). A remarkable collection of Babylonian mathematical texts. Notices of the American Mathematical Society, 55(9), 1076–1086.Google Scholar
- Geake, J. (2008). Neuromythologies in education. Educational Research, 50(2), 123–133. https://doi.org/10.1080/00131880802082518 CrossRefGoogle Scholar
- Geary, D. C. (1995). Reflections of evolution and culture in children’s cognition: Implications for mathematical development and instruction. American Psychologist, 50(1), 24–37. https://doi.org/10.1037/0003-066X.50.1.24 CrossRefPubMedPubMedCentralGoogle Scholar
- Geary, D. C. (2005). The origin of mind: Evolution of brain, cognition, and general intelligence. Washington, DC: American Psychological Association. https://doi.org/10.1037/10871-000 CrossRefGoogle Scholar
- Geary, D. C. (2007). An evolutionary perspective on learning disability in mathematics. Developmental Neuropsychology, 32(1), 471–519. https://doi.org/10.1080/87565640701360924 CrossRefPubMedPubMedCentralGoogle Scholar
- Geary, D. C. (2010). Evolution and education. Psicothema, 22(1), 35–40.PubMedGoogle Scholar
- Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef CrossRefPubMedPubMedCentralGoogle Scholar
- Geary, D. C., & Berch, D. B. (2016). Evolutionary perspectives on child development and education. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-29,986-0 CrossRefGoogle Scholar
- Geary, D. C., Berch, D. B., & Koepke, K. M. (2015). Evolutionary origins and early development of number processing. San Diego, CA: Elsevier Academic Press.Google Scholar
- Geary, D. C., & Bjorklund, D. F. (2000). Evolutionary developmental psychology. Child Development, 71(1), 57–65. https://doi.org/10.1111/1467-8624.00118 CrossRefPubMedGoogle Scholar
- Gelman, R., & Williams, E. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. In W. Damon (Ed.), Handbook of child psychology: Cognition, perception, and language (Vol. 2, 5th ed., pp. 575–630). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
- Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews Neuroscience, 7(5), 2–7. https://doi.org/10.1038/nrn1907 CrossRefGoogle Scholar
- Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27(1), 4–13. https://doi.org/10.1037/0012-1649.27.1.4 CrossRefGoogle Scholar
- Gottlieb, G., Wahlsten, D., & Lickliter, R. (2006). The significance of biology for human development: A developmental psychobiological systems view. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: Theoretical models of human development (Vol. 1, 6th ed., pp. 210–257). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
- Gould, S., & Vrba, E. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8(1), 4–15. Retrieved from http://www.jstor.org.proxy.libraries.uc.edu/stable/2400563 CrossRefGoogle Scholar
- Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30, 2936–2952.CrossRefGoogle Scholar
- Grattan-Guinness, I. (2009). Routes of learning: Highways, pathways, and byways in the history of mathematics. Baltimore, MD: Johns Hopkins University Press.Google Scholar
- Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539–559. https://doi.org/10.2307/1130197 CrossRefGoogle Scholar
- Hille, K. (2011). Bringing research into educational practice: Lessons learned. Mind, Brain, and Education, 5(2), 63–70. https://doi.org/10.1111/j.1751-228X.2011.01111.x CrossRefGoogle Scholar
- Howard-Jones, P. A. (2014). Neuroscience and education: Myths and messages. Nature Reviews Neuroscience, 15(12), 817–824. https://doi.org/10.1038/nrn3817 CrossRefPubMedGoogle Scholar
- Howard-Jones, P. A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., … Thomas, M. C. (2016). The principles and practices of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 620–627. https://doi.org/10.1037/rev0000036 CrossRefPubMedGoogle Scholar
- Johnson, M. H., Halit, H., Grice, S. J., & Karmiloff-Smith, A. (2002). Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis. Development and Psychopathology, 14(3), 521–536. https://doi.org/10.1017/S0954579402003073 CrossRefPubMedGoogle Scholar
- Jordan, N. C., & Hanich, L. B. (2000). Mathematical thinking in second-grade children with different forms of LD. Journal of Learning Disabilities, 33(6), 567–578. https://doi.org/10.1177/002221940003300605 CrossRefPubMedGoogle Scholar
- Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., … Willmes, K. (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts. Brain Structure & Function, 221(2), 979–995. https://doi.org/10.1007/s00429-014-0951-1 CrossRefGoogle Scholar
- Kopera-Frye, K., Dehaene, S., & Streissguth, A. P. (1996). Impairments of number processing induced by prenatal alcohol exposure. Neuropsychologia, 34(12), 1187–1196. https://doi.org/10.1016/0028-3932(96)00043-7 CrossRefPubMedGoogle Scholar
- Kroeger, L. A., Brown, R. D., & O’Brien, B. A. (2012). Connecting neuroscience, cognitive, and educational theories and research to practice: A review of mathematics intervention programs. Early Education and Development, 23(1), 37–58. https://doi.org/10.1080/10409289.2012.617289 CrossRefGoogle Scholar
- Lave, J., Murtaugh, M., & de la Rocha, O. (1984). The dialectic of arithmetic in grocery shopping. In B. Rogoff & J. Lave (Eds.), Everyday cognition: Its development in social context (pp. 67–94). Cambridge, MA: Harvard University Press.Google Scholar
- LeFevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single-digit multiplication problems. Journal of Experimental Psychology: General, 125(3), 284–306. https://doi.org/10.1037/0096-3445.125.3.284 CrossRefGoogle Scholar
- Lindell, A. K., & Kidd, E. (2011). Why right-brain teaching is half-witted: A critique of the misapplication of neuroscience to education. Mind, Brain, and Education, 5(3), 121–127. https://doi.org/10.1111/j.1751-228X.2011.01120.x CrossRefGoogle Scholar
- Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. Cambridge, MA: Harvard University Press.Google Scholar
- Magill-Evans, J., Hodge, M., & Darrah, J. (2002). Establishing a transdisciplinary research team in academia. Journal of Allied Health, 31(4), 217–221.Google Scholar
- Mareschal, D., Butterworth, B., & Tolmie, A. (Eds.). (2013). Educational neuroscience. Chichester, England: Wiley-Blackwell.Google Scholar
- Merzbach, U. C., & Boyer, C. B. (2011). A history of mathematics (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
- Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in Human Neuroscience, 9, 227. https://doi.org/10.3389/fnhum.2015.00227 CrossRefPubMedPubMedCentralGoogle Scholar
- Molfese, D. L., Molfese, V. J., & Pratt, N. L. (2007). The use of event-related evoked potentials to predict developmental outcomes. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 199–225). New York, NY: Psychology Press.Google Scholar
- Poldrack, R. A., & Wagner, A. D. (2004). What can neuroimaging tell us about the mind? Insights from prefrontal cortex. Current Directions in Psychological Science, 13(5), 177–181. https://doi.org/10.1111/j.0963-7214.2004.00302.x CrossRefGoogle Scholar
- Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with math difficulties. Journal of Learning Disabilities, 42(4), 356–371. https://doi.org/10.1177/0022219409335211 CrossRefPubMedPubMedCentralGoogle Scholar
- Rajagopal, A., Byars, A., Schapiro, M., Lee, G. R., & Holland, S. K. (2014). Success rates for functional MR imaging in children. American Journal of Neuroradiology, 35, 2319–2325. https://doi.org/10.3174/ajnr.A4062 CrossRefPubMedGoogle Scholar
- Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A neuropsychological perspective. Journal of Learning Disabilities, 26(4), 214–226. https://doi.org/10.1177/002221949302600402 CrossRefPubMedGoogle Scholar
- Sameroff, A. (2009). The transactional model of development: How children and contexts shape each other. Washington, DC: American Psychological Association. https://doi.org/10.1037/11877-000 CrossRefGoogle Scholar
- Saxe, G. B. (1988). The mathematics of child street vendors. Child Development, 59(5), 1415–1425. https://doi.org/10.2307/1130503 CrossRefGoogle Scholar
- Scarr, S. (1993). Biological and cultural diversity: The legacy of Darwin for development. Child Development, 64(5), 1333–1353. https://doi.org/10.2307/1131538 CrossRefPubMedGoogle Scholar
- Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions. Neuroimage, 22, 1414–1420. Retrieved from http://dx.doi.org.proxy.libraries.uc.edu/10.1016/j.neuroimage.2004.03.021 CrossRefGoogle Scholar
- Setati, M., & Bangura, A. K. (2012). African mathematics: From bones to computers. Lanham, MD: University Press of America.Google Scholar
- Shallice, T., & Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14(2), 294–303. https://doi.org/10.1016/S0010-9452(78)80055-0 CrossRefPubMedGoogle Scholar
- Spelke, E. (2002). Developmental neuroimaging: A developmental psychologist looks ahead. Developmental Science, 5(3), 392–396. https://doi.org/10.1111/1467-7687.00378 CrossRefGoogle Scholar
- Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89–96. https://doi.org/10.1111/j.1467-7687.2007.00569.x CrossRefPubMedGoogle Scholar
- Supekar, K., Iuculano, T., Chen, L., & Menon, V. (2015). Remediation of childhood math anxiety and associated neural circuits through cognitive tutoring. The Journal of Neuroscience, 35(36), 12574–12583. https://doi.org/10.1523/JNEUROSCI.0786-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
- Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19–136). New York, NY: Oxford University Press.Google Scholar
- Turner, D. A. (2014). Education and neuroscience. In D. Canter & D. A. Turner (Eds.), Biologising the social sciences: Challenging Darwinian and neuroscience explanations (pp. 73–85). New York, NY: Routledge/Taylor & Francis Group.Google Scholar
- U.S. Department of Education, Institute of Educational Science, National Center for Education Statistics, National Assessment of Educational Progress. (2015). 2015 Mathematics and reading at grade 12. Retrieved March 5, 2017, from https://nationsreportcard.gov/reading_math_g12_2015/
- van Eimeren, L., Grabner, R. H., Koschutnig, K., Reishofer, G., Ebner, F., & Ansari, D. (2010). Structure-function relationships underlying calculation: A combined diffusion tensor imaging and fMRI study. Neuroimage, 52(1), 358–363. https://doi.org/10.1016/j.neuroimage.2010.04.001 CrossRefGoogle Scholar
- Varma, S., McCandliss, B. D., & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 37(3), 140–152. https://doi.org/10.3102/0013189X08317687 CrossRefGoogle Scholar
- Vilorio, D. (2014). STEM 101: Intro to tomorrow’s jobs. Occupational Outlook Quarterly, 58, 2–12. Retrieved March 5, 2017, from https://www.bls.gov/careeroutlook/2014/spring/art01.pdf Google Scholar
- Witherington, D. C., & Lickliter, R. (2017). Integrating development and evolution in psychological science: Evolutionary developmental psychology, developmental systems, and explanatory pluralism. Human Development, 59(4), 200–234. https://doi.org/10.1159/000450715 CrossRefGoogle Scholar