Theories for Understanding the Neuroscience of Mathematical Cognitive Development

  • Rhonda Douglas Brown


Throughout history, humans have invented and used mathematics to solve meaningful problems critical to survival and prosperity. To advance our understanding of mathematical cognitive development and achievement, it is important to place research within theoretical frameworks that allow us to interpret and apply results. In this chapter, I discuss evolutionary developmental psychology as a meta-theory for considering important questions relevant to understanding neuroscience research on mathematical cognitive development. Then, I use a developmental systems approach to describe how genetics, neural activity, and experiences in environmental niches dynamically interact in the development of evolved probabilistic cognitive mechanisms. As an example, I describe biologically primary mathematical abilities that may have been selected for in evolution to solve recurrent problems, passed on via genetics, and instantiated in human brain development. The process of their development into biologically secondary mathematical abilities, which are cultural inventions that build upon biologically primary abilities, is then described. I present Dehaene and colleagues’ triple-code model of numerical processing as the predominant neuroscience-based theory of mathematical cognition. I conclude by arguing that there is a place for neuroscience in the field of cognitive development and advocating for the integration of scientific findings across levels of analysis.


Mathematics Evolutionary developmental psychology Developmental systems approach Biologically primary abilities Biologically secondary abilities Triple-code model of numerical processing Neuroscience 


  1. Alferink, L. A., & Farmer-Dougan, V. (2010). Brain-(not) based education: Dangers of misunderstanding and misapplication of neuroscience research. Exceptionality, 18(1), 42–52. CrossRefGoogle Scholar
  2. America COMPETES Act of 2007, Pub. L. No. 110-69 (2007).Google Scholar
  3. Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820–1828.CrossRefGoogle Scholar
  4. Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. Neuroreport, 16(6), 1769–1773.CrossRefGoogle Scholar
  5. Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences, 6(12), 511–516. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382–2393. CrossRefPubMedGoogle Scholar
  7. Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: A test of three verification models. Memory & Cognition, 9(2), 185–196. CrossRefGoogle Scholar
  8. Baltes, P. B., Reuter-Lorenz, P. A., & Rösler, F. (2006). Lifespan development and the brain: The perspective of biocultural co-constructivism. New York, NY: Cambridge University Press. CrossRefGoogle Scholar
  9. Berch, D. B., & Mazzocco, M. M. (2007). Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities. Baltimore, MD: Paul H. Brookes Publishing.Google Scholar
  10. Bjorklund, D. F. (1997a). In search of a metatheory for cognitive development (or, Piaget is dead and I don’t feel so good myself). Child Development, 68(1), 144–148. CrossRefPubMedGoogle Scholar
  11. Bjorklund, D. F. (1997b). The role of immaturity in human development. Psychological Bulletin, 122(2), 153–169. CrossRefPubMedGoogle Scholar
  12. Bjorklund, D. F. (2003). Evolutionary psychology from a developmental systems perspective: Comment on Lickliter and Honeycutt (2003). Psychological Bulletin, 129(6), 836–841. CrossRefPubMedGoogle Scholar
  13. Bjorklund, D. F. (2006). Mother knows best: Epigenetic inheritance, maternal effects, and the evolution of human intelligence. Developmental Review, 26(2), 213–242. CrossRefGoogle Scholar
  14. Bjorklund, D. F. (2017). Prepared is not preformed: Commentary on Witherington and Lickliter. Human Development, 59(4), 235–241. CrossRefGoogle Scholar
  15. Bjorklund, D. F., & Ellis, B. J. (2014). Children, childhood, and development in evolutionary perspective. Developmental Review, 34(3), 225–264. CrossRefGoogle Scholar
  16. Bjorklund, D. F., Ellis, B. J., & Rosenberg, J. S. (2007). Evolved probabilistic cognitive mechanisms: An evolutionary approach to gene × environment × development interactions. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 35, pp. 1–36). San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
  17. Bjorklund, D. F., & Kipp, K. (1996). Parental investment theory and gender differences in the evolution of inhibition mechanisms. Psychological Bulletin, 120(2), 163–188. CrossRefPubMedGoogle Scholar
  18. Bjorklund, D. F., & Pellegrini, A. D. (2002). The origins of human nature: Evolutionary developmental psychology. Washington, DC: American Psychological Association. CrossRefGoogle Scholar
  19. Bouchard, T. J., Lykken, D. T., Tellegen, A., & McGue, M. (1996). Genes, drives, environment, and experience: EPD theory revised. In C. P. Benbow & D. J. Lubinski (Eds.), Intellectual talent: Psychometric and social issues (pp. 5–43). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  20. Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123, 600–612. CrossRefPubMedGoogle Scholar
  21. Bronfenbrenner, U., & Morris, P. A. (2006). The bioecological model of human development. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: Theoretical models of human development (Vol. 1, 6th ed., pp. 793–828). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
  22. Brown, R. D., & Bjorklund, D. F. (1998). The biologizing of cognition, development, and education: Approach with cautious enthusiasm. Educational Psychology Review, 10(3), 355–373. CrossRefGoogle Scholar
  23. Brown, R. D., & Chiu, C. P. (2006). Neural correlates of memory development and learning: Combining neuroimaging and behavioral measures to understand cognitive and developmental processes. Developmental Neuropsychology, 29(2), 279–291. CrossRefGoogle Scholar
  24. Bruer, J. T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26(8), 4–16. CrossRefGoogle Scholar
  25. Byars, A. W., Holland, S. K., Strawsburg, R. H., Bommer, W., Dunn, R. S., Schmithorst, V. J., & Plante, E. (2002). Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. Journal of Child Neurology, 17(12), 885–890. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Byrnes, J. P., & Fox, N. A. (1998a). Minds, brains, and education: Part II. Responding to the commentaries. Educational Psychology Review, 10(4), 431–439. CrossRefGoogle Scholar
  27. Byrnes, J. P., & Fox, N. A. (1998b). The educational relevance of research in cognitive neuroscience. Educational Psychology Review, 10(3), 297–342. CrossRefGoogle Scholar
  28. Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British Journal of Developmental Psychology, 3(1), 21–29. CrossRefGoogle Scholar
  29. Charette, R. N. (2013). The STEM crisis is a myth. Institute of Electrical and Electronics Engineers Spectrum.
  30. Coch, D., Michlovitz, S. A., Ansari, D., & Baird, A. (2009). Building mind, brain, and education connections: The view from the upper valley. Mind, Brain, and Education, 3(1), 27–33. CrossRefGoogle Scholar
  31. Cohen, L., Dehaene, S., Cohochon, F., Lehericy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical, and fMRI study. Neuropsychologia, 38, 1426–1440. Retrieved from CrossRefGoogle Scholar
  32. Cole, M. (1990). Cognitive development and formal schooling: The evidence from cross-cultural research. In L. C. Moll (Ed.), Vygotsky and education (pp. 319–348). New York, NY: Cambridge University Press.Google Scholar
  33. Crone, E. A., Poldrack, R. A., & Durston, S. (2010). Challenges and methods in developmental neuroimaging. Human Brain Mapping, 31(6), 835–837. CrossRefPubMedGoogle Scholar
  34. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dehaene, S. (2011). The number sense: How the mind creates mathematics (Rev. ed.). New York, NY: Oxford University Press.Google Scholar
  36. Dehaene, S., & Cohen, L. (1991). Two mental calculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29(11), 1045–1074. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  38. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. CrossRefPubMedGoogle Scholar
  40. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison: A PET study. Neuropsychologia, 34(11), 1097–1106. CrossRefPubMedGoogle Scholar
  42. Devlin, K. (2005, May). Street mathematics [Web log post]. Retrieved from
  43. Donaldson, M. (1978). Children’s minds. New York, NY: Norton.Google Scholar
  44. Ford, D. H., & Lerner, R. M. (1992). Developmental systems theory: An integrative approach. Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
  45. Friberg, J. (2008). A remarkable collection of Babylonian mathematical texts. Notices of the American Mathematical Society, 55(9), 1076–1086.Google Scholar
  46. Geake, J. (2008). Neuromythologies in education. Educational Research, 50(2), 123–133. CrossRefGoogle Scholar
  47. Geary, D. C. (1995). Reflections of evolution and culture in children’s cognition: Implications for mathematical development and instruction. American Psychologist, 50(1), 24–37. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Geary, D. C. (2005). The origin of mind: Evolution of brain, cognition, and general intelligence. Washington, DC: American Psychological Association. CrossRefGoogle Scholar
  49. Geary, D. C. (2007). An evolutionary perspective on learning disability in mathematics. Developmental Neuropsychology, 32(1), 471–519. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Geary, D. C. (2010). Evolution and education. Psicothema, 22(1), 35–40.PubMedGoogle Scholar
  51. Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Geary, D. C., & Berch, D. B. (2016). Evolutionary perspectives on child development and education. Cham, Switzerland: Springer International Publishing.,986-0 CrossRefGoogle Scholar
  53. Geary, D. C., Berch, D. B., & Koepke, K. M. (2015). Evolutionary origins and early development of number processing. San Diego, CA: Elsevier Academic Press.Google Scholar
  54. Geary, D. C., & Bjorklund, D. F. (2000). Evolutionary developmental psychology. Child Development, 71(1), 57–65. CrossRefPubMedGoogle Scholar
  55. Gelman, R., & Williams, E. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. In W. Damon (Ed.), Handbook of child psychology: Cognition, perception, and language (Vol. 2, 5th ed., pp. 575–630). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
  56. Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews Neuroscience, 7(5), 2–7. CrossRefGoogle Scholar
  57. Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27(1), 4–13. CrossRefGoogle Scholar
  58. Gottlieb, G., Wahlsten, D., & Lickliter, R. (2006). The significance of biology for human development: A developmental psychobiological systems view. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology: Theoretical models of human development (Vol. 1, 6th ed., pp. 210–257). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
  59. Gould, S., & Vrba, E. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8(1), 4–15. Retrieved from CrossRefGoogle Scholar
  60. Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30, 2936–2952.CrossRefGoogle Scholar
  61. Grattan-Guinness, I. (2009). Routes of learning: Highways, pathways, and byways in the history of mathematics. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  62. Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539–559. CrossRefGoogle Scholar
  63. Hille, K. (2011). Bringing research into educational practice: Lessons learned. Mind, Brain, and Education, 5(2), 63–70. CrossRefGoogle Scholar
  64. Howard-Jones, P. A. (2014). Neuroscience and education: Myths and messages. Nature Reviews Neuroscience, 15(12), 817–824. CrossRefPubMedGoogle Scholar
  65. Howard-Jones, P. A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., … Thomas, M. C. (2016). The principles and practices of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 620–627. CrossRefPubMedGoogle Scholar
  66. Johnson, M. H., Halit, H., Grice, S. J., & Karmiloff-Smith, A. (2002). Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis. Development and Psychopathology, 14(3), 521–536. CrossRefPubMedGoogle Scholar
  67. Jordan, N. C., & Hanich, L. B. (2000). Mathematical thinking in second-grade children with different forms of LD. Journal of Learning Disabilities, 33(6), 567–578. CrossRefPubMedGoogle Scholar
  68. Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., … Willmes, K. (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts. Brain Structure & Function, 221(2), 979–995. CrossRefGoogle Scholar
  69. Kopera-Frye, K., Dehaene, S., & Streissguth, A. P. (1996). Impairments of number processing induced by prenatal alcohol exposure. Neuropsychologia, 34(12), 1187–1196. CrossRefPubMedGoogle Scholar
  70. Kroeger, L. A., Brown, R. D., & O’Brien, B. A. (2012). Connecting neuroscience, cognitive, and educational theories and research to practice: A review of mathematics intervention programs. Early Education and Development, 23(1), 37–58. CrossRefGoogle Scholar
  71. Lave, J., Murtaugh, M., & de la Rocha, O. (1984). The dialectic of arithmetic in grocery shopping. In B. Rogoff & J. Lave (Eds.), Everyday cognition: Its development in social context (pp. 67–94). Cambridge, MA: Harvard University Press.Google Scholar
  72. LeFevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single-digit multiplication problems. Journal of Experimental Psychology: General, 125(3), 284–306. CrossRefGoogle Scholar
  73. Lindell, A. K., & Kidd, E. (2011). Why right-brain teaching is half-witted: A critique of the misapplication of neuroscience to education. Mind, Brain, and Education, 5(3), 121–127. CrossRefGoogle Scholar
  74. Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. Cambridge, MA: Harvard University Press.Google Scholar
  75. Magill-Evans, J., Hodge, M., & Darrah, J. (2002). Establishing a transdisciplinary research team in academia. Journal of Allied Health, 31(4), 217–221.Google Scholar
  76. Mareschal, D., Butterworth, B., & Tolmie, A. (Eds.). (2013). Educational neuroscience. Chichester, England: Wiley-Blackwell.Google Scholar
  77. Merzbach, U. C., & Boyer, C. B. (2011). A history of mathematics (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
  78. Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in Human Neuroscience, 9, 227. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Molfese, D. L., Molfese, V. J., & Pratt, N. L. (2007). The use of event-related evoked potentials to predict developmental outcomes. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 199–225). New York, NY: Psychology Press.Google Scholar
  80. Poldrack, R. A., & Wagner, A. D. (2004). What can neuroimaging tell us about the mind? Insights from prefrontal cortex. Current Directions in Psychological Science, 13(5), 177–181. CrossRefGoogle Scholar
  81. Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with math difficulties. Journal of Learning Disabilities, 42(4), 356–371. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rajagopal, A., Byars, A., Schapiro, M., Lee, G. R., & Holland, S. K. (2014). Success rates for functional MR imaging in children. American Journal of Neuroradiology, 35, 2319–2325. CrossRefPubMedGoogle Scholar
  83. Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A neuropsychological perspective. Journal of Learning Disabilities, 26(4), 214–226. CrossRefPubMedGoogle Scholar
  84. Sameroff, A. (2009). The transactional model of development: How children and contexts shape each other. Washington, DC: American Psychological Association. CrossRefGoogle Scholar
  85. Saxe, G. B. (1988). The mathematics of child street vendors. Child Development, 59(5), 1415–1425. CrossRefGoogle Scholar
  86. Scarr, S. (1993). Biological and cultural diversity: The legacy of Darwin for development. Child Development, 64(5), 1333–1353. CrossRefPubMedGoogle Scholar
  87. Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions. Neuroimage, 22, 1414–1420. Retrieved from CrossRefGoogle Scholar
  88. Setati, M., & Bangura, A. K. (2012). African mathematics: From bones to computers. Lanham, MD: University Press of America.Google Scholar
  89. Shallice, T., & Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14(2), 294–303. CrossRefPubMedGoogle Scholar
  90. Spelke, E. (2002). Developmental neuroimaging: A developmental psychologist looks ahead. Developmental Science, 5(3), 392–396. CrossRefGoogle Scholar
  91. Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89–96. CrossRefPubMedGoogle Scholar
  92. Supekar, K., Iuculano, T., Chen, L., & Menon, V. (2015). Remediation of childhood math anxiety and associated neural circuits through cognitive tutoring. The Journal of Neuroscience, 35(36), 12574–12583. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19–136). New York, NY: Oxford University Press.Google Scholar
  94. Turner, D. A. (2014). Education and neuroscience. In D. Canter & D. A. Turner (Eds.), Biologising the social sciences: Challenging Darwinian and neuroscience explanations (pp. 73–85). New York, NY: Routledge/Taylor & Francis Group.Google Scholar
  95. U.S. Department of Education, Institute of Educational Science, National Center for Education Statistics, National Assessment of Educational Progress. (2015). 2015 Mathematics and reading at grade 12. Retrieved March 5, 2017, from
  96. van Eimeren, L., Grabner, R. H., Koschutnig, K., Reishofer, G., Ebner, F., & Ansari, D. (2010). Structure-function relationships underlying calculation: A combined diffusion tensor imaging and fMRI study. Neuroimage, 52(1), 358–363. CrossRefGoogle Scholar
  97. Varma, S., McCandliss, B. D., & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 37(3), 140–152. CrossRefGoogle Scholar
  98. Vilorio, D. (2014). STEM 101: Intro to tomorrow’s jobs. Occupational Outlook Quarterly, 58, 2–12. Retrieved March 5, 2017, from Google Scholar
  99. Witherington, D. C., & Lickliter, R. (2017). Integrating development and evolution in psychological science: Evolutionary developmental psychology, developmental systems, and explanatory pluralism. Human Development, 59(4), 200–234. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rhonda Douglas Brown
    • 1
  1. 1.Developmental & Learning Sciences Research CenterSchool of Education, University of CincinnatiCincinnatiUSA

Personalised recommendations