Switching Synchronization and Metastable States in 1D Memristive Networks

  • Valeriy A. Slipko
  • Yuriy V. PershinEmail author


One-dimensional (1D) memristive networks are the simplest type of memristive networks one can imagine. Yet, despite their morphological simplicity, such networks represent an important class of memory networks characterized by the strongest interaction among the network components. This chapter reviews several important dynamical features of 1D memristive networks composed of realistic threshold-type memristive systems. First of all, the accelerated and decelerated switching regimes of memristive systems are introduced and exemplified. Secondly, the phenomenon of switching synchronization is presented. Finally, it is shown that metastable transmission lines composed of metastable memristive circuits can be used to transfer the information from one space location to another. Here, the information transfer occurs in the form of a switching front propagating along the line resembling a kink in, say, classical \(\phi ^4\) field theory model. Importantly, such memristive kinks can also be used for information processing purposes. This chapter thus reveals the triad of memristive systems functionalities in their 1D networks: information processing, storage and transfer.



We are grateful to M. Di Ventra and M. Shumovskyi for their contribution to some of original publications reviewed here.


  1. 1.
    Adamatzky, A., Chua, L.: Memristor Networks. Springer, Cham (2014)CrossRefGoogle Scholar
  2. 2.
    Backus, J.: Can programming be liberated from the von Neumann style? A functional style and its algebra of programs. Comm. Assoc. Comp. Mach. 21, 613–641 (1978)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Belova, T.I., Kudryavtsev, A.E.: Solitons and their interactions in classical field theory. Phys. Usp. 40, 359 (1997)CrossRefGoogle Scholar
  4. 4.
    Biolek, D., Kolka, Z., Biolková, V., Biolek, Z., Potrebić, M., Tošić, D.: Modeling and simulation of large memristive networks. Int. J. Circ. Theor. Appl. (2017)Google Scholar
  5. 5.
    Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)CrossRefGoogle Scholar
  6. 6.
    Büttiker, M., Harris, E.P., Landauer, R.: Thermal activation in extremely underdamped josephson-junction circuits. Phys. Rev. B 28, 1268–1275 (1983)CrossRefGoogle Scholar
  7. 7.
    Campbell, D.K., Schonfeld, J.F., Wingate, C.A.: Resonance structure in kink-antikink interactions in \(\varphi \)4 theory. Physica D 9, 1–32 (1983)CrossRefGoogle Scholar
  8. 8.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Di Ventra, M., Pershin, Y.V.: The parallel approach. Nat. Phys. 9, 200 (2013)CrossRefGoogle Scholar
  10. 10.
    Di Ventra, M., Pershin, Y.V.: On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology 24, 255201 (2013)CrossRefGoogle Scholar
  11. 11.
    Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRefGoogle Scholar
  12. 12.
    Gazit, E.: The “correctly folded” state of proteins: is it a metastable state? Angew. Chem. Int. Ed. 41(2), 257–259 (2002)CrossRefGoogle Scholar
  13. 13.
    Hong, S., Auciello, O., Wouters, D.: Emerging Non-volatile Memories. Springer, New York (2014)CrossRefGoogle Scholar
  14. 14.
    Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  15. 15.
    Jo, S.H., Kim, K.-H., Lu, W.: High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)CrossRefGoogle Scholar
  16. 16.
    Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881 (2010)CrossRefGoogle Scholar
  17. 17.
    Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80, 021926 (2009)CrossRefGoogle Scholar
  18. 18.
    Pershin, Y.V., Traversa, F.L., Di Ventra, M.: Memcomputing with membrane memcapacitive systems. Nanotechnology 26, 225201 (2015)CrossRefGoogle Scholar
  19. 19.
    Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011)CrossRefGoogle Scholar
  20. 20.
    Pershin, Y.V., Di Ventra, M.: Solving mazes with memristors: a massively-parallel approach. Phys. Rev. E 84, 046703 (2011)CrossRefGoogle Scholar
  21. 21.
    Pershin, Y.V., Di Ventra, M.: Neuromorphic, digital, and quantum computation with memory circuit elements. Proc. IEEE 100(6), 2071–2080 (2012)CrossRefGoogle Scholar
  22. 22.
    Pershin, Y.V., Di Ventra, M.: Self-organization and solution of shortest-path optimization problems with memristive networks. Phys. Rev. E 88, 013305 (2013)CrossRefGoogle Scholar
  23. 23.
    Pershin, Y.V., Slipko, V.A., Di Ventra, M.: Complex dynamics and scale invariance of one-dimensional memristive networks. Phys. Rev. E 87, 022116 (2013)CrossRefGoogle Scholar
  24. 24.
    Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)CrossRefGoogle Scholar
  25. 25.
    Rajaraman, R.: Solitons and instantons (1982)Google Scholar
  26. 26.
    Schindler, C., Staikov, G., Waser, R.: Electrode kinetics of CuSiO\(_2\)-based resistive switching cells: overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 072109 (2009)CrossRefGoogle Scholar
  27. 27.
    Sheldon, F.C., Di Ventra, M.: Conducting-insulating transition in adiabatic memristive networks. Phys. Rev. E 95, 012305 (2017)CrossRefGoogle Scholar
  28. 28.
    Slipko, V.A., Pershin, Y.V.: Switching synchronization in one-dimensional memristive networks: an exact solution. Phys. Rev. E 96, 062213 (2017)Google Scholar
  29. 29.
    Slipko, V.A., Shumovskyi, M., Pershin, Y.V.: Switching synchronization in one-dimensional memristive networks. Phys. Rev. E 92, 052917 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Slipko, V.A., Pershin, Y.V.: Metastable memristive lines for signal transmission and information processing applications. Phys. Rev. E 95, 042213 (2017)CrossRefGoogle Scholar
  31. 31.
    Traversa, F.L., Bonani, F., Pershin, Y.V., Di Ventra, M.: Dynamic computing random access memory. Nanotechnology 25, 285201 (2014)CrossRefGoogle Scholar
  32. 32.
    Vion, D., Götz, M., Joyez, P., Esteve, D., Devoret, M.H.: Thermal activation above a dissipation barrier: switching of a small josephson junction. Phys. Rev. Lett. 77, 3435–3438 (1996)CrossRefGoogle Scholar
  33. 33.
    Vourkas, I., Stathis, D., Sirakoulis, G.: Massively parallel analog computing: Areadne’s thread was made of memristors. IEEE Trans. Emerg. Top. Comp. 6(1), 145–155 (2015)Google Scholar
  34. 34.
    Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nature Nanotech. 8(1), 13–24 (2013)CrossRefGoogle Scholar
  35. 35.
    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., Philip Wong, H.-S.: An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Dev. 58(8), 2729–2737 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of PhysicsOpole UniversityOpolePoland
  2. 2.Department of Physics and AstronomyUniversity of South CarolinaColumbiaUSA

Personalised recommendations