Abstract
The basic self-directed channel memristor is comprised of five layers of Ge2Se3, SnSe, and an oxidizable metal, Ag. Each layer plays a role in the operation of the memristor, influencing both the electrical and thermal properties of the device. Device operation can be altered by manipulation of these layers through material changes, layer ordering, or layer exclusion. In this chapter the function of the SnSe layer is explored through electrical characterization of several device types in which this metal chalcogenide layer has been altered, either by changing the metal, or replacing Se with Te.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Courtesy of Micron Technology, Inc.
- 2.
LTSpice is a free high performance SPICE simulator available from linear technology.
- 3.
When first fabricated, some devices in Sample 1 displayed irregular and variable pinched hysteresis on the first and second voltage sweeps. However, the response changed to the NDR shown in Fig. 5 when: (1) measured repeatedly (>50 times) right after fabrication; (2) heated to modest temperatures for an hour (>65 °C); and (3) sufficient time has passed after fabrication.
- 4.
After initial fabrication, Sample 10 exhibited high threshold voltages, in the range of 2–3 V. Over a four-year period since the sample was first fabricated, the first write threshold voltage has dropped below 1 V, as shown in Fig. 6.
References
Campbell, K.A.: Self-directed channel memristor for high temperature operation. Microelectron. J. 59, 10–14 (2017)
Campbell, K.A., Drake, K.T., Barney Smith, E.H.: Pulse shape and timing dependence on the spike-timing dependent plasticity response of ion-conducting memristors as synapses. Front. Bioeng. Biotechnol. 4(7), 1–11 (2016)
Regner, J., Balasubramanian, M., Cook, B., Li, Y., Kassayebetre, H., Sharma, A., Baker, R.J., Campbell, K.A.: Integration of IC industry feature sizes with university back-end-of-line post processing: example using a phase-change memory test chip. In: IEEE Workshop on Microelectronics and Electron Devices, WMED 2009, pp. 1–4, 3 April 2009
Li, S., Zeng, F., Chen, C., Liu, H., Tang, G., Gao, S., Song, C., Lin, Y., Pan, F., Guo, D.: Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1, 5292–5298 (2013)
Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003/1–254003/22 (2011)
Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionics mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)
Hirose, Y., Hirose, H.: Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47(6), 2767–2772 (1976)
Wang, F., Dunn, W.P., Jain, M., De Leo, C., Vickers, N.: The effects of active layer thickness on programmable metallization cell based on Ag–Ge–S. Solid-State Electron. 61(1), 33–37 (2011)
Oblea, A.S., Timilsina, A., Moore, D., Campbell, K.A.: Silver chalcogenide based memristor devices. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–3 (2010)
Campbell, K.A., Moore, J.T.: Silver-selenide/chalcogenide glass stack for resistance variable memory. US Patent 7,151,273, 19 Dec 2006
Campbell, K.A.: Resistance variable memory device and method of fabrication. US Patent 7,348,209, 25 Mar 2008
Campbell, K.A.: Method of forming a PCRAM device incorporating a resistance-variable chalcogenide element. US Patent 7,354,793, 8 Apr 2008
Feltz, A.: Amorphous inorganic materials and glasses. VCH, New York (1993)
Wang, Y., Mitkova, M., Georgiev, D.G., Mamedov, S., Boolchand, P.: Macroscopic phase separation of Se-rich (x < 1/3) ternary Agy(GexSe1−x)1−y glasses. J. Phys. Condens. Matter, 15(16), S1573–S1584 (2003)
Edwards, A.H., Campbell, K.A., Pineda, A.C.: Self-trapping of single and paired electrons in Ge2Se3. J. Phys. Condens. Matter 24, 195801 (2012)
Campbell, K.A., Anderson, C.M.: Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers. Microelectron. J. 38(1), 52–59 (2007)
Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2(1), 163–199 (1973)
Liang, Y.-C., Yamanaka, H., Tada, K.: Exposure characteristics of electron-beam-induced silver doping and its application to grating device fabrication in chalcogenide glass films. Thin Solid Films 165, 55–65 (1988)
Singh, B., Beaumont, S.P., Bower, P.G., Wilkinson, C.D.W.: Sub-50-nm lithography in amorphous Se-Ge inorganic resist by electron beam exposure. Appl. Phys. Lett. 41, 1002 (1982)
Kamalanathan, D., Russo, U., Ielmini, D., Kozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron. Device Lett. 30(5), 553–555 (2009)
Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., Kozicki, M.N.: Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron. Devices 56(5), 1040–1046 (2009)
Kamalanathan, D., Akhavan, A., Kozicki, M.N.: Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22, 254017/1–254071/6 (2011)
Petritz, R.L.: Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956)
Zhai, T., Fang, X., Liao, M., Xu, X., Li, L., Liu, B., Koide, Y., Ma, Y., Yao, J., Bando, Y., Golberg, D.: Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano 4(3), 1596–1602 (2010). https://doi.org/10.1021/nn9012466
Li, P., Wang, Q., Deng, G., Guo, X., Jiang, W., Liu, H., Li, F., Thanh, N.T.K.: A new insight into the thermodynamical criterion for the preparation of semiconductor and metal nanocrystals using a polymerized complexing method. Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c7cp04097k
Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24, 319–368 (2015)
Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device SPICE model and its application in circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 1201–1214 (2013)
Cook, B.R.: Electrical switching studies of chalcogenide-based ion-conducting variable resistance devices. M.S. Thesis, Department of Electrical and Computer Engineering, Boise State University (2011)
Dan, A., Satpati, B., Satyam, P.V., Chakravorty, D.: Diodelike behavior in glass-metal nanocomposites. J. Appl. Phys. 93(8), 4794–4800 (2003)
Pham, N.K., Ta, K.H.T., Tran, V.C., Le, V.H., Nguyen, B.T.L., Ju, H.K., Seetawan, T., Phan, B.T.: Effect of post-annealing processes on filamentary-based resistive switching mechanism of chromium oxide thin films. J. Electron. Mater. 46(6), 3285–3294 (2017)
Wang, W., Ji, Y., Zhang, H., Zhao, A., Wang, B., Yang, J., Hou, J.G.: Negative differential resistance in a hybrid silicon-molecular system: resonance between the intrinsic surface-states and the molecular orbital. ACS Nano 6(8), 7066–7076 (2012)
Sun, H., Liu, Q., Long, S., Lv, H., Banerjee, W., Liu, M.: Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 116, 154509 (2014)
Wei, L.J., Yuan, Y., Wang, J., Tu, H.Q., Gao, Y., You, B., Du, J.: Bipolar resistive switching with negative differential resistance effect in a Cu/GaTiO3/Ag device. Phys. Chem. Chem. Phys. 19, 11864 (2017)
Tang, A., Qu, S., Hou, Y., Teng, F., Tan, H., Liu, J., Zhang, X., Wang, Y., Wang, Z.: Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites. J. Appl. Phys. 108, 094320 (2010)
Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., Sosa, N.E., Papandreou, N., Lung, H.-L., Pozidis, H., Eleftheriou, E., Lam, C.H.: Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circ. Syst. 6(2), 146–162 (2016)
Mitkova, M., Wang, Y., Boolchand, P.: Dual chemical role of Ag as an additive in chalcogenide glasses. Phys. Rev. Lett. 83(19), 3848–3851 (1999)
Acknowledgements
The author would like to thank Micron Technology for assistance with device fabrication and STEM imaging and Prof. Rene Rodriguez for insightful discussions. Several students have contributed to the work included here: Beth Cook (DC data collection at temperature), Denver Lloyd (CW simulations), Sean Brasfield (room temperature DC and CW data collection), Randall Bassine (device fabrication) and Jeremy Astle (device fabrication). Parts of this work were partially supported by a grant from the National Science Foundation, grant no. CCF-1320987, the United States Air Force Office of Scientific Research, DEPSCoR Grant No. FA9550-07-1-0546, and by the United States Air Force Research Laboratory, Grant No. FA9453-08-2-0252.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Campbell, K.A. (2019). The Self-directed Channel Memristor: Operational Dependence on the Metal-Chalcogenide Layer. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-76375-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76374-3
Online ISBN: 978-3-319-76375-0
eBook Packages: Computer ScienceComputer Science (R0)