Skip to main content

The Self-directed Channel Memristor: Operational Dependence on the Metal-Chalcogenide Layer

  • Chapter
  • First Online:
Handbook of Memristor Networks

Abstract

The basic self-directed channel memristor is comprised of five layers of Ge2Se3, SnSe, and an oxidizable metal, Ag. Each layer plays a role in the operation of the memristor, influencing both the electrical and thermal properties of the device. Device operation can be altered by manipulation of these layers through material changes, layer ordering, or layer exclusion. In this chapter the function of the SnSe layer is explored through electrical characterization of several device types in which this metal chalcogenide layer has been altered, either by changing the metal, or replacing Se with Te.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Courtesy of Micron Technology, Inc.

  2. 2.

    LTSpice is a free high performance SPICE simulator available from linear technology.

  3. 3.

    When first fabricated, some devices in Sample 1 displayed irregular and variable pinched hysteresis on the first and second voltage sweeps. However, the response changed to the NDR shown in Fig. 5 when: (1) measured repeatedly (>50 times) right after fabrication; (2) heated to modest temperatures for an hour (>65 °C); and (3) sufficient time has passed after fabrication.

  4. 4.

    After initial fabrication, Sample 10 exhibited high threshold voltages, in the range of 2–3 V. Over a four-year period since the sample was first fabricated, the first write threshold voltage has dropped below 1 V, as shown in Fig. 6.

References

  1. Campbell, K.A.: Self-directed channel memristor for high temperature operation. Microelectron. J. 59, 10–14 (2017)

    Article  Google Scholar 

  2. Campbell, K.A., Drake, K.T., Barney Smith, E.H.: Pulse shape and timing dependence on the spike-timing dependent plasticity response of ion-conducting memristors as synapses. Front. Bioeng. Biotechnol. 4(7), 1–11 (2016)

    Google Scholar 

  3. Regner, J., Balasubramanian, M., Cook, B., Li, Y., Kassayebetre, H., Sharma, A., Baker, R.J., Campbell, K.A.: Integration of IC industry feature sizes with university back-end-of-line post processing: example using a phase-change memory test chip. In: IEEE Workshop on Microelectronics and Electron Devices, WMED 2009, pp. 1–4, 3 April 2009

    Google Scholar 

  4. Li, S., Zeng, F., Chen, C., Liu, H., Tang, G., Gao, S., Song, C., Lin, Y., Pan, F., Guo, D.: Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1, 5292–5298 (2013)

    Article  Google Scholar 

  5. Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003/1–254003/22 (2011)

    Article  Google Scholar 

  6. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionics mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  7. Hirose, Y., Hirose, H.: Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47(6), 2767–2772 (1976)

    Article  Google Scholar 

  8. Wang, F., Dunn, W.P., Jain, M., De Leo, C., Vickers, N.: The effects of active layer thickness on programmable metallization cell based on Ag–Ge–S. Solid-State Electron. 61(1), 33–37 (2011)

    Article  Google Scholar 

  9. Oblea, A.S., Timilsina, A., Moore, D., Campbell, K.A.: Silver chalcogenide based memristor devices. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–3 (2010)

    Google Scholar 

  10. Campbell, K.A., Moore, J.T.: Silver-selenide/chalcogenide glass stack for resistance variable memory. US Patent 7,151,273, 19 Dec 2006

    Google Scholar 

  11. Campbell, K.A.: Resistance variable memory device and method of fabrication. US Patent 7,348,209, 25 Mar 2008

    Google Scholar 

  12. Campbell, K.A.: Method of forming a PCRAM device incorporating a resistance-variable chalcogenide element. US Patent 7,354,793, 8 Apr 2008

    Google Scholar 

  13. Feltz, A.: Amorphous inorganic materials and glasses. VCH, New York (1993)

    Google Scholar 

  14. Wang, Y., Mitkova, M., Georgiev, D.G., Mamedov, S., Boolchand, P.: Macroscopic phase separation of Se-rich (x < 1/3) ternary Agy(GexSe1−x)1−y glasses. J. Phys. Condens. Matter, 15(16), S1573–S1584 (2003)

    Google Scholar 

  15. Edwards, A.H., Campbell, K.A., Pineda, A.C.: Self-trapping of single and paired electrons in Ge2Se3. J. Phys. Condens. Matter 24, 195801 (2012)

    Google Scholar 

  16. Campbell, K.A., Anderson, C.M.: Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers. Microelectron. J. 38(1), 52–59 (2007)

    Article  Google Scholar 

  17. Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2(1), 163–199 (1973)

    Article  Google Scholar 

  18. Liang, Y.-C., Yamanaka, H., Tada, K.: Exposure characteristics of electron-beam-induced silver doping and its application to grating device fabrication in chalcogenide glass films. Thin Solid Films 165, 55–65 (1988)

    Article  Google Scholar 

  19. Singh, B., Beaumont, S.P., Bower, P.G., Wilkinson, C.D.W.: Sub-50-nm lithography in amorphous Se-Ge inorganic resist by electron beam exposure. Appl. Phys. Lett. 41, 1002 (1982)

    Article  Google Scholar 

  20. Kamalanathan, D., Russo, U., Ielmini, D., Kozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron. Device Lett. 30(5), 553–555 (2009)

    Article  Google Scholar 

  21. Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., Kozicki, M.N.: Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron. Devices 56(5), 1040–1046 (2009)

    Article  Google Scholar 

  22. Kamalanathan, D., Akhavan, A., Kozicki, M.N.: Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22, 254017/1–254071/6 (2011)

    Article  Google Scholar 

  23. Petritz, R.L.: Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956)

    Article  Google Scholar 

  24. Zhai, T., Fang, X., Liao, M., Xu, X., Li, L., Liu, B., Koide, Y., Ma, Y., Yao, J., Bando, Y., Golberg, D.: Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano 4(3), 1596–1602 (2010). https://doi.org/10.1021/nn9012466

    Article  Google Scholar 

  25. Li, P., Wang, Q., Deng, G., Guo, X., Jiang, W., Liu, H., Li, F., Thanh, N.T.K.: A new insight into the thermodynamical criterion for the preparation of semiconductor and metal nanocrystals using a polymerized complexing method. Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c7cp04097k

    Article  Google Scholar 

  26. Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24, 319–368 (2015)

    Article  Google Scholar 

  27. Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device SPICE model and its application in circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 1201–1214 (2013)

    Article  Google Scholar 

  28. Cook, B.R.: Electrical switching studies of chalcogenide-based ion-conducting variable resistance devices. M.S. Thesis, Department of Electrical and Computer Engineering, Boise State University (2011)

    Google Scholar 

  29. Dan, A., Satpati, B., Satyam, P.V., Chakravorty, D.: Diodelike behavior in glass-metal nanocomposites. J. Appl. Phys. 93(8), 4794–4800 (2003)

    Article  Google Scholar 

  30. Pham, N.K., Ta, K.H.T., Tran, V.C., Le, V.H., Nguyen, B.T.L., Ju, H.K., Seetawan, T., Phan, B.T.: Effect of post-annealing processes on filamentary-based resistive switching mechanism of chromium oxide thin films. J. Electron. Mater. 46(6), 3285–3294 (2017)

    Article  Google Scholar 

  31. Wang, W., Ji, Y., Zhang, H., Zhao, A., Wang, B., Yang, J., Hou, J.G.: Negative differential resistance in a hybrid silicon-molecular system: resonance between the intrinsic surface-states and the molecular orbital. ACS Nano 6(8), 7066–7076 (2012)

    Article  Google Scholar 

  32. Sun, H., Liu, Q., Long, S., Lv, H., Banerjee, W., Liu, M.: Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 116, 154509 (2014)

    Article  Google Scholar 

  33. Wei, L.J., Yuan, Y., Wang, J., Tu, H.Q., Gao, Y., You, B., Du, J.: Bipolar resistive switching with negative differential resistance effect in a Cu/GaTiO3/Ag device. Phys. Chem. Chem. Phys. 19, 11864 (2017)

    Article  Google Scholar 

  34. Tang, A., Qu, S., Hou, Y., Teng, F., Tan, H., Liu, J., Zhang, X., Wang, Y., Wang, Z.: Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites. J. Appl. Phys. 108, 094320 (2010)

    Article  Google Scholar 

  35. Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., Sosa, N.E., Papandreou, N., Lung, H.-L., Pozidis, H., Eleftheriou, E., Lam, C.H.: Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circ. Syst. 6(2), 146–162 (2016)

    Article  Google Scholar 

  36. Mitkova, M., Wang, Y., Boolchand, P.: Dual chemical role of Ag as an additive in chalcogenide glasses. Phys. Rev. Lett. 83(19), 3848–3851 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Micron Technology for assistance with device fabrication and STEM imaging and Prof. Rene Rodriguez for insightful discussions. Several students have contributed to the work included here: Beth Cook (DC data collection at temperature), Denver Lloyd (CW simulations), Sean Brasfield (room temperature DC and CW data collection), Randall Bassine (device fabrication) and Jeremy Astle (device fabrication). Parts of this work were partially supported by a grant from the National Science Foundation, grant no. CCF-1320987, the United States Air Force Office of Scientific Research, DEPSCoR Grant No. FA9550-07-1-0546, and by the United States Air Force Research Laboratory, Grant No. FA9453-08-2-0252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy A. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campbell, K.A. (2019). The Self-directed Channel Memristor: Operational Dependence on the Metal-Chalcogenide Layer. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics