Advertisement

The Self-directed Channel Memristor: Operational Dependence on the Metal-Chalcogenide Layer

  • Kristy A. CampbellEmail author
Chapter

Abstract

The basic self-directed channel memristor is comprised of five layers of Ge2Se3, SnSe, and an oxidizable metal, Ag. Each layer plays a role in the operation of the memristor, influencing both the electrical and thermal properties of the device. Device operation can be altered by manipulation of these layers through material changes, layer ordering, or layer exclusion. In this chapter the function of the SnSe layer is explored through electrical characterization of several device types in which this metal chalcogenide layer has been altered, either by changing the metal, or replacing Se with Te.

Notes

Acknowledgements

The author would like to thank Micron Technology for assistance with device fabrication and STEM imaging and Prof. Rene Rodriguez for insightful discussions. Several students have contributed to the work included here: Beth Cook (DC data collection at temperature), Denver Lloyd (CW simulations), Sean Brasfield (room temperature DC and CW data collection), Randall Bassine (device fabrication) and Jeremy Astle (device fabrication). Parts of this work were partially supported by a grant from the National Science Foundation, grant no. CCF-1320987, the United States Air Force Office of Scientific Research, DEPSCoR Grant No. FA9550-07-1-0546, and by the United States Air Force Research Laboratory, Grant No. FA9453-08-2-0252.

References

  1. 1.
    Campbell, K.A.: Self-directed channel memristor for high temperature operation. Microelectron. J. 59, 10–14 (2017)CrossRefGoogle Scholar
  2. 2.
    Campbell, K.A., Drake, K.T., Barney Smith, E.H.: Pulse shape and timing dependence on the spike-timing dependent plasticity response of ion-conducting memristors as synapses. Front. Bioeng. Biotechnol. 4(7), 1–11 (2016)Google Scholar
  3. 3.
    Regner, J., Balasubramanian, M., Cook, B., Li, Y., Kassayebetre, H., Sharma, A., Baker, R.J., Campbell, K.A.: Integration of IC industry feature sizes with university back-end-of-line post processing: example using a phase-change memory test chip. In: IEEE Workshop on Microelectronics and Electron Devices, WMED 2009, pp. 1–4, 3 April 2009Google Scholar
  4. 4.
    Li, S., Zeng, F., Chen, C., Liu, H., Tang, G., Gao, S., Song, C., Lin, Y., Pan, F., Guo, D.: Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1, 5292–5298 (2013)CrossRefGoogle Scholar
  5. 5.
    Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003/1–254003/22 (2011)CrossRefGoogle Scholar
  6. 6.
    Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionics mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)CrossRefGoogle Scholar
  7. 7.
    Hirose, Y., Hirose, H.: Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47(6), 2767–2772 (1976)CrossRefGoogle Scholar
  8. 8.
    Wang, F., Dunn, W.P., Jain, M., De Leo, C., Vickers, N.: The effects of active layer thickness on programmable metallization cell based on Ag–Ge–S. Solid-State Electron. 61(1), 33–37 (2011)CrossRefGoogle Scholar
  9. 9.
    Oblea, A.S., Timilsina, A., Moore, D., Campbell, K.A.: Silver chalcogenide based memristor devices. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–3 (2010)Google Scholar
  10. 10.
    Campbell, K.A., Moore, J.T.: Silver-selenide/chalcogenide glass stack for resistance variable memory. US Patent 7,151,273, 19 Dec 2006Google Scholar
  11. 11.
    Campbell, K.A.: Resistance variable memory device and method of fabrication. US Patent 7,348,209, 25 Mar 2008Google Scholar
  12. 12.
    Campbell, K.A.: Method of forming a PCRAM device incorporating a resistance-variable chalcogenide element. US Patent 7,354,793, 8 Apr 2008Google Scholar
  13. 13.
    Feltz, A.: Amorphous inorganic materials and glasses. VCH, New York (1993)Google Scholar
  14. 14.
    Wang, Y., Mitkova, M., Georgiev, D.G., Mamedov, S., Boolchand, P.: Macroscopic phase separation of Se-rich (x < 1/3) ternary Agy(GexSe1−x)1−y glasses. J. Phys. Condens. Matter, 15(16), S1573–S1584 (2003)Google Scholar
  15. 15.
    Edwards, A.H., Campbell, K.A., Pineda, A.C.: Self-trapping of single and paired electrons in Ge2Se3. J. Phys. Condens. Matter 24, 195801 (2012)Google Scholar
  16. 16.
    Campbell, K.A., Anderson, C.M.: Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers. Microelectron. J. 38(1), 52–59 (2007)CrossRefGoogle Scholar
  17. 17.
    Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2(1), 163–199 (1973)CrossRefGoogle Scholar
  18. 18.
    Liang, Y.-C., Yamanaka, H., Tada, K.: Exposure characteristics of electron-beam-induced silver doping and its application to grating device fabrication in chalcogenide glass films. Thin Solid Films 165, 55–65 (1988)CrossRefGoogle Scholar
  19. 19.
    Singh, B., Beaumont, S.P., Bower, P.G., Wilkinson, C.D.W.: Sub-50-nm lithography in amorphous Se-Ge inorganic resist by electron beam exposure. Appl. Phys. Lett. 41, 1002 (1982)CrossRefGoogle Scholar
  20. 20.
    Kamalanathan, D., Russo, U., Ielmini, D., Kozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron. Device Lett. 30(5), 553–555 (2009)CrossRefGoogle Scholar
  21. 21.
    Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., Kozicki, M.N.: Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron. Devices 56(5), 1040–1046 (2009)CrossRefGoogle Scholar
  22. 22.
    Kamalanathan, D., Akhavan, A., Kozicki, M.N.: Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22, 254017/1–254071/6 (2011)CrossRefGoogle Scholar
  23. 23.
    Petritz, R.L.: Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508–1516 (1956)CrossRefGoogle Scholar
  24. 24.
    Zhai, T., Fang, X., Liao, M., Xu, X., Li, L., Liu, B., Koide, Y., Ma, Y., Yao, J., Bando, Y., Golberg, D.: Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano 4(3), 1596–1602 (2010).  https://doi.org/10.1021/nn9012466CrossRefGoogle Scholar
  25. 25.
    Li, P., Wang, Q., Deng, G., Guo, X., Jiang, W., Liu, H., Li, F., Thanh, N.T.K.: A new insight into the thermodynamical criterion for the preparation of semiconductor and metal nanocrystals using a polymerized complexing method. Phys. Chem. Chem. Phys. (2017).  https://doi.org/10.1039/c7cp04097kCrossRefGoogle Scholar
  26. 26.
    Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24, 319–368 (2015)CrossRefGoogle Scholar
  27. 27.
    Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device SPICE model and its application in circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 1201–1214 (2013)CrossRefGoogle Scholar
  28. 28.
    Cook, B.R.: Electrical switching studies of chalcogenide-based ion-conducting variable resistance devices. M.S. Thesis, Department of Electrical and Computer Engineering, Boise State University (2011)Google Scholar
  29. 29.
    Dan, A., Satpati, B., Satyam, P.V., Chakravorty, D.: Diodelike behavior in glass-metal nanocomposites. J. Appl. Phys. 93(8), 4794–4800 (2003)CrossRefGoogle Scholar
  30. 30.
    Pham, N.K., Ta, K.H.T., Tran, V.C., Le, V.H., Nguyen, B.T.L., Ju, H.K., Seetawan, T., Phan, B.T.: Effect of post-annealing processes on filamentary-based resistive switching mechanism of chromium oxide thin films. J. Electron. Mater. 46(6), 3285–3294 (2017)CrossRefGoogle Scholar
  31. 31.
    Wang, W., Ji, Y., Zhang, H., Zhao, A., Wang, B., Yang, J., Hou, J.G.: Negative differential resistance in a hybrid silicon-molecular system: resonance between the intrinsic surface-states and the molecular orbital. ACS Nano 6(8), 7066–7076 (2012)CrossRefGoogle Scholar
  32. 32.
    Sun, H., Liu, Q., Long, S., Lv, H., Banerjee, W., Liu, M.: Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 116, 154509 (2014)CrossRefGoogle Scholar
  33. 33.
    Wei, L.J., Yuan, Y., Wang, J., Tu, H.Q., Gao, Y., You, B., Du, J.: Bipolar resistive switching with negative differential resistance effect in a Cu/GaTiO3/Ag device. Phys. Chem. Chem. Phys. 19, 11864 (2017)CrossRefGoogle Scholar
  34. 34.
    Tang, A., Qu, S., Hou, Y., Teng, F., Tan, H., Liu, J., Zhang, X., Wang, Y., Wang, Z.: Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites. J. Appl. Phys. 108, 094320 (2010)CrossRefGoogle Scholar
  35. 35.
    Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.-Y., Wu, J.-Y., Kim, S., Sosa, N.E., Papandreou, N., Lung, H.-L., Pozidis, H., Eleftheriou, E., Lam, C.H.: Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circ. Syst. 6(2), 146–162 (2016)CrossRefGoogle Scholar
  36. 36.
    Mitkova, M., Wang, Y., Boolchand, P.: Dual chemical role of Ag as an additive in chalcogenide glasses. Phys. Rev. Lett. 83(19), 3848–3851 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoise State UniversityBoiseUSA

Personalised recommendations