Skip to main content

Brain-Inspired Memristive Neural Networks for Unsupervised Learning

  • Chapter
  • First Online:
Handbook of Memristor Networks

Abstract

Memristive devices, such as resistive switching memory (RRAM) and phase change memory (PCM), show variable resistance which can mimic the synaptic plasticity in the human brain. This fascinating analogy has provided the inspiration for many recent research advances, involving memristive devices and their use as artificial electronics synapses in neuromorphic circuits with learning capability. In particular, RRAM-based artificial synapses are extremely promising in terms of area efficiency, low power consumption, and flexibility of design which pave the way for spiking neural networks that perform and behave like the human brain. This chapter will review the state of the art about the design and development of memristive neural networks for unsupervised learning. First, the optimization of RRAM devices for synaptic applications will be discussed, and a novel RRAM device with improved resistance window and controllability of resistance will be introduced. Then, a hybrid CMOS/memristive synaptic circuit will be shown to carry out learning tasks via the spike-timing dependent plasticity (STDP), which is one of the learning rules in biological synapses. Finally, the neural networks based on RRAM synapses will be reviewed, covering both feed-forward networks and recurrent networks. In both cases, the network displays unsupervised learning of input patterns, which can be stored, recognized, or even reconstructed by the network, thus highlighting the wealth of potential promising applications for memristive networks with synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). https://doi.org/10.1038/nmat2023

    Article  Google Scholar 

  2. Akinaga, H., Shima, H.: Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98(12), 2237–2251 (2010). https://doi.org/10.1109/JPROC.2010.2070830

    Article  Google Scholar 

  3. Wong, H.-S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., Lee, B., Chen, F.T., Tsai, M.-J.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  4. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). https://doi.org/10.1038/NNANO.2012.240

    Article  Google Scholar 

  5. Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 063002 (2016). https://doi.org/10.1088/0268-1242/31/6/063002

    Article  Google Scholar 

  6. Hickmott, T.W.: Low frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33(9), 2669 (1962). https://doi.org/10.1063/1.1702530

    Article  Google Scholar 

  7. Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO films. Solid-State Electron. 7(11), 785–790 (1964). https://doi.org/10.1016/0038-1101(64)90131-5

    Article  Google Scholar 

  8. Simmons, J.G., Verderber, R.R.: New conduction and reversible memory phenomena in thin insulating films. Proc. Roy. Soc. A. 301, 77–102 (1967). https://doi.org/10.1098/rspa.1967.0191

    Article  Google Scholar 

  9. Beck, A., Bednorz, J.G., Gerber, Ch., Rossel, C., Widber, D.: Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77(1), 139–141 (2000). https://doi.org/10.1063/1.126902

    Article  Google Scholar 

  10. Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.-S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Kim, J.-S., Choi, J.S., Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85(23), 5655 (2004). https://doi.org/10.1063/1.1831560

    Article  Google Scholar 

  11. Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.-I., Moon, I.T.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: IEEE International Electron Devices Meeting (IEDM), pp. 587–590 (2004). https://doi.org/10.1109/IEDM.2004.1419228

  12. Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B., Tiedke, S.: Resistive switching mechanism of TiO\(_2\) thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005). https://doi.org/10.1063/1.2001146

    Article  Google Scholar 

  13. Zahurak, J., Miyata, K., Fischer, M., Balakrishnan, M., Chhajed, S., Wells, D., Li, H., Torsi, A., Lim, J., Korber, M., Nakazawa, K., Mayuzumi, S., Honda, M., Sills, S., Yasuda, S., Calderoni, A., Cook, B., Damarla, G., Tran, H., Wang, B., Cardon, C., Karda, K., Okuno, J., Johnson, A., Kunihiro, T., Sumino, J., Tsukamoto, M., Aratani, K., Ramaswamy, N., Otsuka, W., Prall, K.: Process integration of a 27 nm, 16 Gb Cu ReRAM. In: IEEE International Electron Devices Meeting (IEDM), pp. 140–143 (2014). https://doi.org/10.1109/IEDM.2014.7046994

  14. Ueki, M., Takeuchi, K., Yamamoto, T., Tanabe, A., Ikarashi, N., Saitoh, M., Nagumo, T., Sunamura, H., Narihiro, M., Uejima, K., Masuzaki, K., Furutake, N., Saito, S., Yabe, Y., Mitsuiki, A., Takeda, K., Hase, T., Hayashi, Y.: Low-power embedded ReRAM technology for IoT applications. In: IEEE Symposium on VLSI Technology (VLSI Technology), pp. 108–109 (2015). https://doi.org/10.1109/VLSIT.2015.7223640

  15. Chua, L.O.: Memristor–the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  16. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2016). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  19. Burr, G.W., Shelby, R.M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I., Shenoy, R.S., Narayanan, P., Virwani, K., Giacometti, E.U., Kurdi, B.N., Hwang, H.: Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62(11), 3498–3507 (2015). https://doi.org/10.1109/TED.2015.2439635

    Article  Google Scholar 

  20. Yao, P., Wu, H., Gao, B., Eryilmaz, S.B., Huang, X., Zhang, W., Zhang, Q., Deng, N., Shi, L., Wong, H.-S.P., Qian, H.: Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017). https://doi.org/10.1038/ncomms15199

    Article  Google Scholar 

  21. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441

    Article  Google Scholar 

  22. Gu, P., Li, B., Yu, S., Cao, Y., Wang, Y., Yang, H.: Technological exploration of RRAM crossbar array for matrix-vector multiplication. In: 20th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 106–111 (2015). https://doi.org/10.1109/ASPDAC.2015.7058989

  23. Ielmini, D., Sharma, D., Lavizzari, S., Lacaita, A.L.: Reliability impact of chalcogenide-structure relaxation in phase change memory (PCM) cells–Part I: experimental study. IEEE Trans. Electron Devices 56(5), 1070–1077 (2009). https://doi.org/10.1109/TED.2009.2016397

    Article  Google Scholar 

  24. Ambrogio, S., Balatti, S., McCaffrey, V., Wang, D., Ielmini, D.: Noise-induced resistance broadening in resistive switching memory–Part II: array statistics. IEEE Trans. Electron Devices 62(11), 3812–3819 (2015). https://doi.org/10.1109/TED.2015.2477135

    Article  Google Scholar 

  25. Yu, S., Chen, P.-Y., Cao, Y., Xia, L., Wang, Y., Wu, H.: Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect. In: IEEE International Electron Devices Meeting (IEDM), pp. 451–454 (2015). https://doi.org/10.1109/IEDM.2015.7409718

  26. Jang, J.-W., Park, S., Burr, G.W., Hwang, H., Jeong, Y.-H.: Optimization of conductance change in Pr\(_{1-x}\)Ca\(_x\)MnO\(_3\)-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36(5), 457–459 (2015). https://doi.org/10.1109/LED.2015.2418342

    Article  Google Scholar 

  27. Moon, K., Kwak, M., Park, J., Lee, D., Hwang, H.: Improved conductance linearity and conductance ratio of 1T2R synapse device for neuromorphic systems. IEEE Electron Device Lett. 38(8), 1023–1026 (2017). https://doi.org/10.1109/LED.2017.2721638

    Article  Google Scholar 

  28. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014). https://doi.org/10.1126/science.1254642

    Article  Google Scholar 

  29. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016). https://doi.org/10.3389/fnins.2016.00508

    Article  Google Scholar 

  30. Bi, G.-Q., Poo, M.-M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and post synaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Article  Google Scholar 

  31. Wittenberg, G.M., Wang, S.S.-H.: Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J. Neurosci. 26(24), 6610–6617 (2006). https://doi.org/10.1523/JNEUROSCI.5388-05.2006

    Article  Google Scholar 

  32. Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl), 1178–1183 (2000). https://doi.org/10.1038/81453

    Article  Google Scholar 

  33. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000). https://doi.org/10.1038/78829

    Article  Google Scholar 

  34. Caporale, N., Dan, Y.: Spike-timing dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125639

    Article  Google Scholar 

  35. Ielmini, D.: Resistive switching memories. In: J. Webster (ed.), Wiley Encyclopedia Electrical and Electronic Engineering (EEEE). Wiley (2014). ISBN 0-471-13946-7

    Google Scholar 

  36. Lee, H.Y., Chen, Y.S., Chen, P.S., Gu, P.Y., Hsu, Y.Y., Wang, S.M., Liu, W.H., Tsai, C.H., Sheu, S.S., Chiang, P.C., Lin, W.P., Lin, C.H., Chen, W.S., Chen, F.T., Lien, C.H., Tsai, M.: Evidence and solution of over-RESET problem for HfO\(_x\) based resistive memory with sub-ns switching speed and high endurance. In: IEEE International Electron Devices Meeting (IEDM), pp. 460–463 (2010). https://doi.org/10.1109/IEDM.2010.5703395

  37. Lee, H.Y., Chen, P.S., Wu, T.Y., Chen, Y.S., Wang, C.C., Tzeng, P.J., Lin, C.H., Chen, F., Lien, C.H., Tsai, M.-J.: Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO\(_2\) based RRAM. In: IEEE International Electron Devices Meeting (IEDM), pp. 297–300 (2008). https://doi.org/10.1109/IEDM.2008.4796677

  38. Govoreanu, B., Kar, G.S., Chen, Y.-Y., Paraschiv, V., Kubicek, S., Fantini, A., Radu, I.P., Goux, L., Clima, S., Degraeve, R., Jossart, N., Richard, O., Vandeweyer, T., Seo, K., Hendrickx, P., Pourtois, G., Bender, H., Altimime, L., Wouters, D.J., Kittl, J.A., Jurczak, M.: \(10 \times 10\) nm\(^2\) Hf/HfO\(_x\) crossbar resistive RAM with excellent performance, reliability and low-energy operation. In: IEEE International Electron Devices Meeting (IEDM), pp. 729–732 (2011). https://doi.org/10.1109/IEDM.2011.6131652

  39. Balatti, S., Ambrogio, S., Wang, Z.-Q., Sills, S., Calderoni, A., Ramaswamy, N., Ielmini, D.: Voltage-controlled cycling endurance of HfO\(_x\)-based resistive-switching memory. IEEE Trans. Electron Devices 62(10), 3365–3373 (2015). https://doi.org/10.1109/TED.2015.2463104

    Article  Google Scholar 

  40. Wang, W., Fujita, S., Wong, S.S.: RESET mechanism of TiO\(_x\) resistance-change memory device. IEEE Electron Device Lett. 30(7), 733–735 (2009). https://doi.org/10.1109/LED.2009.2021001

    Article  Google Scholar 

  41. Park, J., Jung, S., Lee, J., Lee, W., Kim, S., Shin, J., Hwang, H.: Resistive switching characteristics of ultra-thin TiO\(_x\). Microelectron. Eng. 88(7), 1136–1139 (2011). https://doi.org/10.1016/j.mee.2011.03.050

    Article  Google Scholar 

  42. Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, C.-J., Seo, D.H., Seo, S., Chung, U.-I., Yoo, I.-K., Kim, K.: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta\(_2\)O\(_{5-x}\)/TaO\(_{2-x}\) bilayer structures. Nat. Mater. 10(8), 625–630 (2011). https://doi.org/10.1038/nmat3070

    Article  Google Scholar 

  43. Yang, J.J., Zhang, M.-X., Strachan, J.P., Miao, F., Pickett, M.D., Kelley, R.D., Medeiros-Ribeiro, G., Williams, R.S.: High switching endurance in TaO\(_x\) memristive devices. Appl. Phys. Lett. 97(23), 232102 (2010). https://doi.org/10.1063/1.3524521

    Article  Google Scholar 

  44. Kund, M., Beitel, G., Pinnow, C.-U., Roehr, T., Schumann, J., Symanczyk, R., Ufert, K.-D., Mueller, G.: Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. In: IEEE International Electron Devices Meeting (IEDM), pp. 754–757 (2005). https://doi.org/10.1109/IEDM.2005.1609463

  45. Aratani, K., Ohba, K., Mizuguchi, T., Yasuda, S., Shiimoto, T., Tsushima, T., Sone, T., Endo, K., Kouchiyama, A., Sasaki, S., Maesaka, A., Yamada, N., Narisawa, H.: A novel resistance memory with high scalability and nanosecond switching. In: IEEE International Electron Devices Meeting (IEDM), pp. 783–786 (2007). https://doi.org/10.1109/IEDM.2007.4419064

  46. Gopalan, C., Ma, Y., Gallo, T., Wang, J., Runnion, E., Saenz, J., Koushan, F., Blanchard, P., Hollmer, S.: Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process. Solid State Electron. 58, 54–61 (2011). https://doi.org/10.1016/j.sse.2010.11.024

    Article  Google Scholar 

  47. Ambrogio, S., Balatti, S., Choi, S., Ielmini, D.: Impact of the mechanical stress on switching characteristics of electrochemical resistive memory. Adv. Mater. 26(23), 3885–3892 (2014). https://doi.org/10.1002/adma.201306250

    Article  Google Scholar 

  48. Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wan, N., Li, Y., Sun, L., Liu, M.: Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24(14), 1844–1849 (2012). https://doi.org/10.1002/adma.201104104

    Article  Google Scholar 

  49. Belmonte, A., Kim, W., Chan, B.T., Heylen, N., Fantini, A., Houssa, M., Jurczak, M., Goux, L.: A thermally stable and high-performance 90-nm Al\(_2\)O\(_3\)/Cu-based 1T1R CBRAM cell. IEEE Trans. Electron Devices 60(11), 3690–3695 (2013). https://doi.org/10.1109/TED.2013.2282000

    Article  Google Scholar 

  50. Schindler, C., Weides, M., Kozicki, M.N., Waser, R.: Low current resistive switching in CuSiO\(_2\) cells. Appl. Phys. Lett. 92(12), 122910 (2008). https://doi.org/10.1063/1.2903707

    Article  Google Scholar 

  51. Calderoni, A., Sills, S., Cardon, C., Faraoni, E., Ramaswamy, N.: Engineering ReRAM for high-density applications. Microelectron. Eng. 147, 145–150 (2015). https://doi.org/10.1016/j.mee.2015.04.044

    Article  Google Scholar 

  52. Balatti, S., Ambrogio, S., Gilmer, D.C., Ielmini, D.: Set variability and failure induced by complementary switching in bipolar RRAM. IEEE Electron Device Lett. 34(7), 861–863 (2013). https://doi.org/10.1109/LED.2013.2261451

    Article  Google Scholar 

  53. Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., Ielmini, D.: Statistical fluctuations in HfO\(_x\) resistive-switching memory: Part I–set/reset variability. IEEE Trans. Electron Devices 61(8), 2912–2919 (2014). https://doi.org/10.1109/TED.2014.2330200

    Article  Google Scholar 

  54. Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., Ielmini, D.: Statistical fluctuations in HfO\(_x\) resistive-switching memory: Part II - Random telegraph noise. IEEE Trans. Electron Devices 61(8), 2920–2927 (2014). https://doi.org/10.1109/TED.2014.2330202

    Article  Google Scholar 

  55. Ambrogio, S., Balatti, S., McCaffrey, V., Wang, D., Ielmini, D.: Noise-induced resistance broadening in resistive switching memory–Part I: Intrinsic cell behavior. IEEE Trans. Electron Devices 62(11), 3805–3811 (2015). https://doi.org/10.1109/TED.2015.2475598

    Article  Google Scholar 

  56. Song, J., Woo, J., Prakash, A., Lee, D., Hwang, H.: Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron Device Lett. 36(7), 681–683 (2015). https://doi.org/10.1109/LED.2015.2430332

    Article  Google Scholar 

  57. Chen, W., Barnaby, H.J., Kozicki, M.N.: Volatile and non-volatile switching in Cu-SiO\(_2\) programmable metallization cells. IEEE Electron Device Lett. 37(5), 580–583 (2016). https://doi.org/10.1109/LED.2016.2540361

    Article  Google Scholar 

  58. Bricalli, A., Ambrosi, E., Laudato, M., Maestro, M., Rodriguez, R., Ielmini, D.: SiO\(_x\)-based resistive switching memory (RRAM) for crossbar storage/select elements with high on/off ratio. In: IEEE International Electron Devices Meeting (IEDM), pp. 87–90 (2016). https://doi.org/10.1109/IEDM.2016.7838344

  59. Wang, Z., Joshi, S., Savel’ev, S.E., Jiang, H., Midya, R., Lin, P., Hu, M., Ge, N., Strachan, J.P., Li, Z., Wu, Q., Barnell, M., Li, G.-L., Xin, H.L., Williams, R.S., Xia, Q., Yang, J.J.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017). https://doi.org/10.1038/nmat4756

    Article  Google Scholar 

  60. Midya, R., Wang, Z., Zhang, J., Savel’ev, S.E., Li, C., Rao, M., Jang, M.H., Joshi, S., Jiang, H., Lin, P., Norris, K., Ge, N., Wu, Q., Barnell, M., Li, Z., Xin, H.L., Williams, R.S., Xia, Q., Yang, J.J.: Anatomy of Ag/Hafnia-based selectors with 10\(^{10}\) nonlinearity. Adv. Mater. 29(12), 1604457 (2017). https://doi.org/10.1002/adma.201604457

    Article  Google Scholar 

  61. Bricalli, A., Ambrosi, E., Laudato, M., Maestro, M., Rodriguez, R., Ielmini, D.: Resistive switching device technology based on silicon oxide for improved on-off ratio - Part II: Select devices. IEEE Trans. Electron Devices 65(1), 122–128 (2018). https://doi.org/10.1109/TED.2017.2776085

    Article  Google Scholar 

  62. Bricalli, A., Ambrosi, E., Laudato, M., Maestro, M., Rodriguez, R., Ielmini, D.: Resistive switching device technology based on silicon oxide for improved on-off ratio - Part I: Memory devices. IEEE Trans. Electron Devices 65(1), 115–121 (2018). https://doi.org/10.1109/TED.2017.2777986

    Article  Google Scholar 

  63. Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011). https://doi.org/10.1109/TED.2011.2167513

    Article  Google Scholar 

  64. Wedig, A., Luebben, M., Cho, D.-Y., Moors, M., Skaja, K., Rana, V., Hasegawa, T., Adepalli, K.K., Yildiz, B., Waser, R., Valov, I.: Nanoscale cation motion in TaO\(_x\), HfO\(_x\) and TiO\(_x\) memristive systems. Nat. Nanotechnol. 11(1), 67–74 (2016). https://doi.org/10.1038/nnano.2015.221

    Article  Google Scholar 

  65. Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C.: Ielmini, D: Resistive switching by voltage-driven ion migration in bipolar RRAM–Part II: Modeling. IEEE Trans. Electron Devices 59(9), 2468–2475 (2012). https://doi.org/10.1109/TED.2012.2202320

    Article  Google Scholar 

  66. Ambrogio, S., Balatti, S., Gilmer, D.C., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378–2386 (2014). https://doi.org/10.1109/TED.2014.2325531

    Article  Google Scholar 

  67. Nardi, F., Larentis, S., Balatti, S., Gilmer, D.C., Ielmini, D.: Resistive switching by voltage-driven ion migration in bipolar RRAM–Part I: Experimental study. IEEE Trans. Electron Devices 59(9), 2461–2467 (2012). https://doi.org/10.1109/TED.2012.2202319

    Article  Google Scholar 

  68. Yu, S., Wu, Y., Wong, H.-S.P.: Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98(10), 103514 (2011). https://doi.org/10.1063/1.3564883

    Article  Google Scholar 

  69. Balatti, S., Larentis, S., Gilmer, D.C., Ielmini, D.: Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 25(10), 1474–1478 (2013). https://doi.org/10.1002/adma.201204097

    Article  Google Scholar 

  70. Zhao, L., Chen, H.-Y., Wu, S.-C., Jiang, Z., Yu, S., Hou, T.-H., Wong, H.-S.P., Nishi, Y.: Multi-level control of conductive nano-filament evolution in HfO\(_2\) ReRAM by pulse-train operations. Nanoscale 6(11), 5698–5702 (2014). https://doi.org/10.1039/C4NR00500G

    Article  Google Scholar 

  71. Prakash, A., Park, J., Song, J., Woo, J., Cha, E.-J., Hwang, H.: Demonstration of low power 3-bit multilevel cell characteristics in a TaO\(_x\)-based RRAM by stack engineering. IEEE Electron Device Lett. 36(1), 32–34 (2015). https://doi.org/10.1109/LED.2014.2375200

    Article  Google Scholar 

  72. Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2), e31 (2007). https://doi.org/10.1371/journal.pcbi.0030031

    Article  Google Scholar 

  73. Masquelier, T., Guyonneau, R., Thorpe, S.J.: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLose One 3(1), e1377 (2008). https://doi.org/10.1371/journal.pone.0001377

    Article  Google Scholar 

  74. Masquelier, T., Guyonneau, R., Thorpe, S.J.: Competitive STDP-based spike pattern learning. Neural Computation 21(5), 1259–1276 (2009). https://doi.org/10.1162/neco.2008.06-08-804

    Article  MATH  Google Scholar 

  75. Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume, D., Gamrat, C., DeSalvo, B.: Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction. In: IEEE International Electron Devices Meeting (IEDM), pp. 79–82 (2011). https://doi.org/10.1109/IEDM.2011.6131488

  76. Zamarreno-Ramos, C., Camunas-Mesa, L.A., Perez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011). https://doi.org/10.3389/fnins.2011.00026

    Article  Google Scholar 

  77. Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B., Gamrat, C.: Visual pattern extraction using energy-efficient "2-PCM synapse" neuromorphic architecture. IEEE Trans. Electron Devices 59(8), 2206–2214 (2012). https://doi.org/10.1109/TED.2012.2197951

    Article  Google Scholar 

  78. Suri, M., Bichler, O., Querlioz, D., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: auditory (cochlea) and visual (retina) cognitive processing applications. In: IEEE International Electron Devices Meeting (IEDM), pp. 235–238 (2012). https://doi.org/10.1109/IEDM.2012.6479017

  79. Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., Wong, H.-S. P.: A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling. In: IEEE International Electron Devices Meeting (IEDM), pp. 9–242 (2012). https://doi.org/10.1109/IEDM.2012.6479018

  80. Park, S., Sheri, A., Kim, J., Noh, J., Jang, J., Jeon, M., Lee, B., Lee, B.R., Lee, B.H., Hwang, H.: Neuromorphic speech systems using advanced ReRAM-based synapse. In: IEEE International Electron Devices Meeting (IEDM), pp. 625–628 (2013). https://doi.org/10.1109/IEDM.2013.6724692

  81. Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013). https://doi.org/10.3389/fnins.2013.00002

    Article  Google Scholar 

  82. Ambrogio, S., Ciocchini, N., Laudato, M., Milo, V., Pirovano, A., Fantini P., Ielmini, D.: Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses. Front. Neurosci. 10, 56 (2016). https://doi.org/10.3389/fnins.2016.00056

  83. Ambrogio, S., Balatti, S., Milo, V., Carboni, R., Wang, Z., Calderoni, A., Ramaswamy, N., Ielmini, D.: Neuromorphic learning and recognition with one-transistor-one-resistor synapses and bistable metal oxide RRAM. IEEE Trans. Electron Devices 63(4), 1508–1515 (2016). https://doi.org/10.1109/TED.2016.2526647

    Article  Google Scholar 

  84. Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., Prodromakis, T.: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016). https://doi.org/10.1038/ncomms12611

    Article  Google Scholar 

  85. Covi, E., Brivio, S., Serb, A., Prodromakis, T., Fanciulli, M., Spiga, S.: Analog memristive synapse in spiking networks implementing unsupervised learning. Front. Neurosci. 10, 482 (2016). https://doi.org/10.3389/fnins.2016.00482

    Article  Google Scholar 

  86. Milo, V., Pedretti, G., Carboni, R., Calderoni, A., Ramaswamy, N., Ambrogio, S., Ielmini, D.: Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity. In: IEEE International Electron Devices Meeting (IEDM), pp. 440–443 (2016). https://doi.org/10.1109/IEDM.2016.7838435

  87. Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A., Ramaswamy, N., Spinelli, A.S., Ielmini, D.: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Sci. Rep. 7(1), 5288 (2017). https://doi.org/10.1038/s41598-017-05480-0

    Article  Google Scholar 

  88. Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A., Ramaswamy, N., Spinelli, A.S., Ielmini, D.: Stochastic learning in neuromorphic hardware via spike timing dependent plasticity with RRAM synapses. IEEE J. Emerging Sel. Top. Circ. Syst. (JETCAS) 8(1), 77–85 (2018). https://doi.org/10.1109/JETCAS.2017.2773124

    Article  Google Scholar 

  89. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015). https://doi.org/10.3389/fncom.2015.00099

    Article  Google Scholar 

  90. Ambrogio, S., Balatti, S., Milo, V., Carboni, R., Wang, Z., Calderoni, A., Ramaswamy, N., Ielmini, D.: Novel RRAM-enabled 1T1R synapse capable of low-power STDP via burst-mode communication and real-time unsupervised machine learning. In: IEEE Symposium on VLSI Technology (VLSI Technology), pp. 196–197 (2016). https://doi.org/10.1109/VLSIT.2016.7573432

  91. Ielmini, D., Ambrogio, S., Milo, V., Balatti, S., Wang, Z.-Q.: Neuromorphic computing with hybrid memristive/CMOS synapses for real-time learning. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1386–1389 (2016). https://doi.org/10.1109/ISCAS.2016.7527508

  92. McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bull. Math Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  93. Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Likharev, K., Strukov, D.: Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 6, 21331 (2016). https://doi.org/10.1038/srep21331

    Article  Google Scholar 

  94. Wang, Z., Ambrogio, S., Balatti, S., Ielmini, D.: A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems. Front. Neurosci. 8, 438 (2015). https://doi.org/10.3389/fnins.2014.00438

    Article  Google Scholar 

  95. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  Google Scholar 

  96. Maass, W.: On the computational power of winner-take-all. Neural Comput. 12(11), 2519–2535 (2000)

    Article  MathSciNet  Google Scholar 

  97. Grossberg, S.: Recurrent neural networks. Scholarpedia 8(2), 1888 (2013). https://doi.org/10.4249/scholarpedia.1888

    Article  Google Scholar 

  98. Indiveri, G., Liu, S.-C.: Memory and information processing in neuromorphic systems. Proc. IEEE 103(8), 1379–1397 (2015). https://doi.org/10.1109/JPROC.2015.2444094

    Article  Google Scholar 

  99. Giulioni, M., Corradi, F., Dante, V., Del Giudice, P.: Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems. Sci. Rep. 5, 14730 (2015). https://doi.org/10.1038/srep14730

    Article  Google Scholar 

  100. Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., Fusi, S., Del Giudice, P.: A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory. IEEE Trans. Neural Netw. 14(5), 1297–1307 (2003). https://doi.org/10.1109/TNN.2003.816367

    Article  Google Scholar 

  101. Chicca, E., Stefanini, F., Bartolozzi, C., Indiveri, G.: Neuromorphic electronic circuits for building autonomous cognitive systems. Proc. IEEE 102(9), 1367–1388 (2014). https://doi.org/10.1109/JPROC.2014.2313954

    Article  Google Scholar 

  102. Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., Douglas. R.J.: Synthesizing cognition in neuromorphic electronic systems. Proc. Natl. Acad. Sci. U.S.A (PNAS) 110(37), E3468–E3476 (2013). https://doi.org/10.1073/pnas.1212083110

    Article  Google Scholar 

  103. Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., Indiveri, G.: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9, 141 (2015). https://doi.org/10.3389/fnins.2015.00141

    Article  Google Scholar 

  104. Guo, X., Merrikh-Bayat, F., Gao, L., Hoskins, B.D., Alibart, F., Linares-Barranco, B., Theogarajan, L., Teuscher, C., Strukov, D.B.: Modeling and experimental demonstration of a Hopfield network analog-to-digital converter with hybrid CMOS/memristor circuits. Front. Neurosci. 9, 488 (2015). https://doi.org/10.3389/fnins.2015.00488

    Article  Google Scholar 

  105. Pershin, Y.V., di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010). https://doi.org/10.1016/j.neunet.2010.05.001

    Article  Google Scholar 

  106. Ziegler, M., Soni, R., Patelczyk, T., Ignatov, M., Bartsch, T., Meuffels, P., Kolhstedt, H.: An electronic version of Pavlov’s dog. Adv. Funct. Mater. 22(13), 2744–2749 (2012). https://doi.org/10.1002/adfm.201200244

    Article  Google Scholar 

  107. Kuzum, D., Jeyasingh, R.G.D., Yu, S., Wong, H.-S.P.: Low-energy robust neuromorphic computation using synaptic devices. IEEE Trans. Electron Devices 59(12), 3489–3494 (2012). https://doi.org/10.1109/TED.2012.2217146

    Article  Google Scholar 

  108. Eryilmaz, S.B., Kuzum, D., Jeyasingh, R., Kim, S.B., BrightSky, M., Lam, C., Wong, H.-S.P.: Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Front. Neurosci. 8, 205 (2014). https://doi.org/10.3389/fnins.2014.00205

    Article  Google Scholar 

  109. Hu, S.G., Liu, Y., Liu, Z., Chen, T.P., Wang, J.J., Yu, Q., Deng, L.J., Yin, Y., Hosaka, S.: Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat. Commun. 6, 7522 (2015). https://doi.org/10.1038/ncomms8522

    Article  Google Scholar 

  110. Milo, V., Ielmini, D., Chicca, E.: Attractor networks and associative memories with STDP learning in RRAM synapses. In: IEEE International Electron Devices Meeting (IEDM), pp. 263–266 (2017). https://doi.org/10.1109/IEDM.2017.8268369

  111. Milo, V., Chicca, E., Ielmini, D.: Brain-inspired recurrent neural network with plastic RRAM synapses. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351523

  112. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. (PNAS) 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  113. Hebb, D.O.: The Organization of Behavior: A Neurophysiological Theory. Wiley, New York (1949)

    Google Scholar 

  114. Pavlov, I.P.: Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University Press, London (1927)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 648635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ielmini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ielmini, D., Milo, V. (2019). Brain-Inspired Memristive Neural Networks for Unsupervised Learning. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics