Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)
CrossRef
Google Scholar
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)
CrossRef
Google Scholar
Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 11(6), 478 (2012)
CrossRef
Google Scholar
Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)
MathSciNet
CrossRef
Google Scholar
Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)
CrossRef
Google Scholar
Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)
CrossRef
Google Scholar
Kozicki, M.N., Park, M.: Mitkova, M: Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4(3), 331–338 (2005)
CrossRef
Google Scholar
Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memories–fundamentals, applications, prospects. Nanotechnology 22(25), 254003 (2011)
CrossRef
Google Scholar
Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N.: Bipolar and unipolar resistive switching in \({\text{Cu}}\)-doped \({\text{ SiO }}_{2}\). IEEE Trans. Electron Devices 54(10), 2762–2768 (2007)
Google Scholar
Wang, Y., Liu, Q., Long, S., Wang, W., Wang, Q., Zhang, M., Zhang, S., Li, Y., Zuo, Q., Yang, J., et al.: Investigation of resistive switching in \({\text{ Cu }}\)-doped \({\text{ HfO }}_{2}\) thin film for multilevel non-volatile memory applications. Nanotechnology 21(4), 045202 (2010)
Google Scholar
Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped ZrO\(_2\). Electron Device Lett. IEEE 29(5), 434–437 (2008)
CrossRef
Google Scholar
Jafar, M., Haneman, D.: Switching in amorphous-silicon devices. Phys. Rev. B 49(19), 13611 (1994)
CrossRef
Google Scholar
Jo, S.H., Lu, W.: CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8(2), 392–397 (2008)
CrossRef
Google Scholar
Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., Lu, W.: Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)
CrossRef
Google Scholar
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Wei, Lu: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)
CrossRef
Google Scholar
Jo, S.H., Kim, K.-H., Lu, W.: Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9(1), 496–500 (2009)
CrossRef
Google Scholar
Kund, M., Beitel, G., Pinnow, C.-U., Rohr, T., Schumann, J., Symanczyk, R., Ufert, K.-D., Muller, G.: Conductive bridging ram (cbram): an emerging non-volatile memory technology scalable to sub 20nm. In: IEEE international Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 754–757. IEEE (2005)
Google Scholar
Joshua Yang, J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013)
CrossRef
Google Scholar
Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., et al.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: IEEE International Electron Devices Meeting, 2004. IEDM Technical Digest, pp. 587–590. IEEE (2004)
Google Scholar
Govoreanu, B., Kar, G.S., Chen, Y., Paraschiv, V., Kubicek, S., Fantini, A., Radu, I.P., Goux, L., Clima, S., Degraeve, R., et al.: \(10\times 10\text{ nm }^2\)\({\text{ Hf }}/{\text{ HfO }}_{x}\) crossbar resistive RAM with excellent performance, reliability and low-energy operation. In 2011 IEEE International Electron Devices Meeting (IEDM), pp. 31–6. IEEE (2011)
Google Scholar
Joshua Yang, J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)
CrossRef
Google Scholar
Chang, T., Yang, Y., Lu, W.: Building neuromorphic circuits with memristive devices. Circ. Syst. Mag. IEEE 13(2), 56–73 (2013)
CrossRef
Google Scholar
Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)
CrossRef
Google Scholar
Chang, T., Sheridan, P., Lu, W.: Modeling and implementation of oxide memristors for neuromorphic applications. In: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–3. IEEE (2012)
Google Scholar
Snider, G.S.: Cortical computing with memristive nanodevices. SciDAC Rev. 10, 58–65 (2008)
Google Scholar
Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory, New edn. Wiley, New York (1949)
Google Scholar
Ponulak, F., Kasinski, A.: Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol. Exp. 71(4), 409 (2011)
Google Scholar
Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)
CrossRef
Google Scholar
Snider, G.S.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures, 2008. NANOARCH 2008, pp. 85–92. IEEE (2008)
Google Scholar
Kuzum, D., Jeyasingh, R.G.D., Lee, B., Philip Wong, H.-S.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2011)
CrossRef
Google Scholar
Zamarreño-Ramos, C., Camuñas-Mesa, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-co, B.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5 (2011)
Google Scholar
Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011)
CrossRef
Google Scholar
Chang, T., Jo, S.-H., Lu, W.: Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)
CrossRef
Google Scholar
Xia, Q., Yang, J.J., Wu, W., Li, X., Williams, R.S.: Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10(8), 2909–2914 (2010)
CrossRef
Google Scholar
Muthukumar, M., Ober, C.K., Thomas, E.L.: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277(5330), 1225–1232 (1997)
CrossRef
Google Scholar
Park, W.Y., Kim, G.H., Seok, J.Y., Kim, K.M., Song, S.J., Lee, M.H., Hwang, C.S.: A Pt/TiO\(_2\)/Ti schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology 21(19), 195201 (2010)
CrossRef
Google Scholar
Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)
CrossRef
Google Scholar
Kim, K.-H., Hyun Jo, S., Gaba, S., Lu, W.: Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96(5), 053106–053106 (2010)
CrossRef
Google Scholar
Liang, J., Wong, H.-S.P.: Cross-point memory array without cell selectors-device characteristics and data storage pattern dependencies. IEEE Trans. Electron Devices 57(10), 2531–2538 (2010)
CrossRef
Google Scholar
Yu, S., Liang, J., Wu, Y., Wong, H.S.P.: Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays. Nanotechnology 21(46), 465202 (2010)
CrossRef
Google Scholar
Likharev, K.K., Strukov, D.B.: CMOL: devices, circuits, and architectures. In: Introducing Molecular Electronics, pp. 447–477. Springer (2005)
Google Scholar
Strukov, D.B., Williams, R.S.: Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Nat. Acad. Sci. 106(48), 20155–20158 (2009)
CrossRef
Google Scholar
Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)
CrossRef
Google Scholar
Xia, Q., Robinett, W., Cumbie, M.W., Banerjee, N., Cardinali, T.J., Yang, J.J., Wu, W., Li, X., Tong, W.M., Strukov, D.B., et al.: Memristor-cmos hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)
CrossRef
Google Scholar
Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network immune to device variations. In: The 2011 International Joint Conference on Neural Networks (IJCNN) , pp. 1775–1781. IEEE (2011)
Google Scholar
Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. arXiv preprint arXiv:0905.2935 (2009)
Itoh, M., Chua, L.O.: Memristor cellular automata and memristor discrete-time cellular neural networks. Int. J. Bifurcat. Chaos 19(11), 3605–3656 (2009)
CrossRef
Google Scholar
Zylberberg, J., Murphy, J.T., DeWeese, M.R.: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of v1 simple cell receptive fields. PLoS Comput. Biol. 7(10), e1002250 (2011)
MathSciNet
CrossRef
Google Scholar
Hermiz, J., Chang, T., Du, C., Lu, W.: Interference and memory capacity effects in memristive systems. Appl. Phys. Lett. 102(8), 083106–083106 (2013)
CrossRef
Google Scholar
Zhao, W., Querlioz, D., Klein, J.-O., Chabi, D., Chappert, C.: Nanodevice-based novel computing paradigms and the neuromorphic approach. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2509–2512. IEEE (2012)
Google Scholar
Maass, W., Zador, A.M.: Dynamic stochastic synapses as computational units. Neural Comput. 11(4), 903–917 (1999)
CrossRef
Google Scholar
Natschlger, T., Maass, W., Zador, A.: Efficient temporal processing with biologically realistic dynamic synapses. Network: Comput. Neural Syst. 12(1), 75–87 (2001)
CrossRef
Google Scholar