Skip to main content

Memristors and Memristive Devices for Neuromorphic Computing

Abstract

Memristors are an important emerging technology for memory and neuromorphic computing applications. In this chapter, we review the fundamentals of the memistor framework developed by Leon Chuan nearly 40 years ago, and examine resistive switching phenomena as the quintessential example of physical memristive systems. A special focus is given to the hardware emulation of biological synapses using memristors and groundbreaking results in the field are reviewed. Future research directions with spiking neural networks is outlined and the exciting prospect of emergent behavior in memristor networks is discussed.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76375-0_13
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76375-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from [2]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    The equation listed is for a charge-controlled memristor; [1] includes a definition for flux-controlled memristors as well.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)

    CrossRef  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    CrossRef  Google Scholar 

  3. Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 11(6), 478 (2012)

    CrossRef  Google Scholar 

  4. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    MathSciNet  CrossRef  Google Scholar 

  5. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    CrossRef  Google Scholar 

  6. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    CrossRef  Google Scholar 

  7. Kozicki, M.N., Park, M.: Mitkova, M: Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4(3), 331–338 (2005)

    CrossRef  Google Scholar 

  8. Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memories–fundamentals, applications, prospects. Nanotechnology 22(25), 254003 (2011)

    CrossRef  Google Scholar 

  9. Schindler, C., Thermadam, S.C.P., Waser, R., Kozicki, M.N.: Bipolar and unipolar resistive switching in \({\text{Cu}}\)-doped \({\text{ SiO }}_{2}\). IEEE Trans. Electron Devices 54(10), 2762–2768 (2007)

    Google Scholar 

  10. Wang, Y., Liu, Q., Long, S., Wang, W., Wang, Q., Zhang, M., Zhang, S., Li, Y., Zuo, Q., Yang, J., et al.: Investigation of resistive switching in \({\text{ Cu }}\)-doped \({\text{ HfO }}_{2}\) thin film for multilevel non-volatile memory applications. Nanotechnology 21(4), 045202 (2010)

    Google Scholar 

  11. Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped ZrO\(_2\). Electron Device Lett. IEEE 29(5), 434–437 (2008)

    CrossRef  Google Scholar 

  12. Jafar, M., Haneman, D.: Switching in amorphous-silicon devices. Phys. Rev. B 49(19), 13611 (1994)

    CrossRef  Google Scholar 

  13. Jo, S.H., Lu, W.: CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8(2), 392–397 (2008)

    CrossRef  Google Scholar 

  14. Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., Lu, W.: Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    CrossRef  Google Scholar 

  15. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Wei, Lu: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    CrossRef  Google Scholar 

  16. Jo, S.H., Kim, K.-H., Lu, W.: Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9(1), 496–500 (2009)

    CrossRef  Google Scholar 

  17. Kund, M., Beitel, G., Pinnow, C.-U., Rohr, T., Schumann, J., Symanczyk, R., Ufert, K.-D., Muller, G.: Conductive bridging ram (cbram): an emerging non-volatile memory technology scalable to sub 20nm. In: IEEE international Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 754–757. IEEE (2005)

    Google Scholar 

  18. Joshua Yang, J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013)

    CrossRef  Google Scholar 

  19. Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., et al.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: IEEE International Electron Devices Meeting, 2004. IEDM Technical Digest, pp. 587–590. IEEE (2004)

    Google Scholar 

  20. Govoreanu, B., Kar, G.S., Chen, Y., Paraschiv, V., Kubicek, S., Fantini, A., Radu, I.P., Goux, L., Clima, S., Degraeve, R., et al.: \(10\times 10\text{ nm }^2\)\({\text{ Hf }}/{\text{ HfO }}_{x}\) crossbar resistive RAM with excellent performance, reliability and low-energy operation. In 2011 IEEE International Electron Devices Meeting (IEDM), pp. 31–6. IEEE (2011)

    Google Scholar 

  21. Joshua Yang, J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)

    CrossRef  Google Scholar 

  22. Chang, T., Yang, Y., Lu, W.: Building neuromorphic circuits with memristive devices. Circ. Syst. Mag. IEEE 13(2), 56–73 (2013)

    CrossRef  Google Scholar 

  23. Chang, T., Jo, S.-H., Kim, K.-H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)

    CrossRef  Google Scholar 

  24. Chang, T., Sheridan, P., Lu, W.: Modeling and implementation of oxide memristors for neuromorphic applications. In: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), pp. 1–3. IEEE (2012)

    Google Scholar 

  25. Snider, G.S.: Cortical computing with memristive nanodevices. SciDAC Rev. 10, 58–65 (2008)

    Google Scholar 

  26. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory, New edn. Wiley, New York (1949)

    Google Scholar 

  27. Ponulak, F., Kasinski, A.: Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiol. Exp. 71(4), 409 (2011)

    Google Scholar 

  28. Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    CrossRef  Google Scholar 

  29. Snider, G.S.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures, 2008. NANOARCH 2008, pp. 85–92. IEEE (2008)

    Google Scholar 

  30. Kuzum, D., Jeyasingh, R.G.D., Lee, B., Philip Wong, H.-S.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2011)

    CrossRef  Google Scholar 

  31. Zamarreño-Ramos, C., Camuñas-Mesa, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-co, B.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5 (2011)

    Google Scholar 

  32. Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011)

    CrossRef  Google Scholar 

  33. Chang, T., Jo, S.-H., Lu, W.: Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)

    CrossRef  Google Scholar 

  34. Xia, Q., Yang, J.J., Wu, W., Li, X., Williams, R.S.: Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10(8), 2909–2914 (2010)

    CrossRef  Google Scholar 

  35. Muthukumar, M., Ober, C.K., Thomas, E.L.: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277(5330), 1225–1232 (1997)

    CrossRef  Google Scholar 

  36. Park, W.Y., Kim, G.H., Seok, J.Y., Kim, K.M., Song, S.J., Lee, M.H., Hwang, C.S.: A Pt/TiO\(_2\)/Ti schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology 21(19), 195201 (2010)

    CrossRef  Google Scholar 

  37. Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)

    CrossRef  Google Scholar 

  38. Kim, K.-H., Hyun Jo, S., Gaba, S., Lu, W.: Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96(5), 053106–053106 (2010)

    CrossRef  Google Scholar 

  39. Liang, J., Wong, H.-S.P.: Cross-point memory array without cell selectors-device characteristics and data storage pattern dependencies. IEEE Trans. Electron Devices 57(10), 2531–2538 (2010)

    CrossRef  Google Scholar 

  40. Yu, S., Liang, J., Wu, Y., Wong, H.S.P.: Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays. Nanotechnology 21(46), 465202 (2010)

    CrossRef  Google Scholar 

  41. Likharev, K.K., Strukov, D.B.: CMOL: devices, circuits, and architectures. In: Introducing Molecular Electronics, pp. 447–477. Springer (2005)

    Google Scholar 

  42. Strukov, D.B., Williams, R.S.: Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Nat. Acad. Sci. 106(48), 20155–20158 (2009)

    CrossRef  Google Scholar 

  43. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)

    CrossRef  Google Scholar 

  44. Xia, Q., Robinett, W., Cumbie, M.W., Banerjee, N., Cardinali, T.J., Yang, J.J., Wu, W., Li, X., Tong, W.M., Strukov, D.B., et al.: Memristor-cmos hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    CrossRef  Google Scholar 

  45. Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network immune to device variations. In: The 2011 International Joint Conference on Neural Networks (IJCNN) , pp. 1775–1781. IEEE (2011)

    Google Scholar 

  46. Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. arXiv preprint arXiv:0905.2935 (2009)

  47. Itoh, M., Chua, L.O.: Memristor cellular automata and memristor discrete-time cellular neural networks. Int. J. Bifurcat. Chaos 19(11), 3605–3656 (2009)

    CrossRef  Google Scholar 

  48. Zylberberg, J., Murphy, J.T., DeWeese, M.R.: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of v1 simple cell receptive fields. PLoS Comput. Biol. 7(10), e1002250 (2011)

    MathSciNet  CrossRef  Google Scholar 

  49. Hermiz, J., Chang, T., Du, C., Lu, W.: Interference and memory capacity effects in memristive systems. Appl. Phys. Lett. 102(8), 083106–083106 (2013)

    CrossRef  Google Scholar 

  50. Zhao, W., Querlioz, D., Klein, J.-O., Chabi, D., Chappert, C.: Nanodevice-based novel computing paradigms and the neuromorphic approach. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2509–2512. IEEE (2012)

    Google Scholar 

  51. Maass, W., Zador, A.M.: Dynamic stochastic synapses as computational units. Neural Comput. 11(4), 903–917 (1999)

    CrossRef  Google Scholar 

  52. Natschlger, T., Maass, W., Zador, A.: Efficient temporal processing with biologically realistic dynamic synapses. Network: Comput. Neural Syst. 12(1), 75–87 (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sheridan, P., Lu, W. (2019). Memristors and Memristive Devices for Neuromorphic Computing. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)