Skip to main content

Synapse as a Memristor


The memristor, the fourth fundamental electric element, was conceptually proposed by L. Chua in 1971 and was found in laboratory late in 2008. Recently a special type of memristor was considered to be able to mimic the behavior of neural synapses. In particular, attributed to the long-term memory of weight changes, the memristor can reproduce the spike-timing-dependent plasticity (STDP) protocol of a synapse, displaying a synaptic modification related to the time interval of pre- and post-synaptic spikes. Not limited to it, we found that the memristor with adaptive thresholds can even mimic higher-order behavior of synapses, realizing the well-known suppression principle of Froemke. This type of memristor can actually express both long-term and short-term plasticities in synapses, which are responsible for the excitation level and the refractory time, respectively. The corresponding dynamical process is governed by a set of ordinary differential equations. Interestingly, the Froemke’s model and our memristor-like model, based on two completely different mechanisms, are found to be quantitatively equivalent. In this chapter we would like to provide this new perspective of looking at synaptic dynamics.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76375-0_12
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76375-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1

(from [11])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(from [9])


  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    CrossRef  Google Scholar 

  2. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)

    CrossRef  Google Scholar 

  3. Chua, L.O., Kang, S.M.:. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    MathSciNet  CrossRef  Google Scholar 

  4. Zamarreño-Ramos, C., Camuñas-Mesa, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5(26) (2011)

    Google Scholar 

  5. Pérez-Carrasco, J.A., Zamarreño-Ramos, C., Serrano-Gotarredona, T., Linares-Barranco, B.: On neuromorphic spiking architectures for asynchronous STDP mem-ristive systems. In: Proceedings of IEEE ISCAS, pp. 1659–1662 (2010)

    Google Scholar 

  6. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

    CrossRef  Google Scholar 

  7. Gerstner, W.: Spiking neurons. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Kempter, R., Gerstner, W., van Hemmen, J.L.: Hebbian learning and spiking neurons. Phys. Rev. E 59, 4498–4514 (1999)

    MathSciNet  CrossRef  Google Scholar 

  9. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  11. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    CrossRef  Google Scholar 

  12. Wang, H.X., Gerkin, R.C., Nauen, D.W., Bi, G.Q.: Coactivation and timing-dependent integration of synaptic potentiation and depression. Nat. Neurosci. 8, 187–193 (2005)

    CrossRef  Google Scholar 

  13. Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002)

    CrossRef  Google Scholar 

  14. Cai, W., Tetzlaff, R.: Neuronal synapse as a memristor: modeling pair- and triplet-based STDP rule. IEEE Trans. Biomed. Circuits Syst. 9(1), 87–95 (2015)

    CrossRef  Google Scholar 

  15. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  16. Pershin, Y.V., Di Ventra, M.: Neuromorphic, digital, and quantum computation with memory circuit elements. Proc. IEEE 100, 2071–80 (2012)

    CrossRef  Google Scholar 

  17. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    CrossRef  Google Scholar 

  18. Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circ. Syst. I: Reg. Pap. 57, 1857–1864 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ronald Tetzlaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cai, W., Tetzlaff, R. (2019). Synapse as a Memristor. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)