Advertisement

Neuroimmune and Systemic Manifestations of Neuroinflammation in the Temporomandibular Joint and Related Disorders

  • André Barkhordarian
  • Francesco Chiappelli
  • G. Gary DemerjianEmail author
Chapter
  • 331 Downloads

Abstract

The human temporomandibular joint (TMJ) is a bilateral articulation between the mandible and the temporal bone of the skull. Temporomandibular disorders (TMD) are a group of pathologies affecting the TMJ, the muscles of mastication, and the related ligaments causing the joint dysfunction. TMD is most often manifested as internal derangements and is considered to be among the most complex and yet common conditions involving orofacial pain. Pain is a common symptom, due to the sensory innervations of the joint and related muscles/ligaments, followed by inflammation as a result of damage and stress upon the surrounding neurons and tissues.Neuroinflammation, mediated in part by chemokine activity and release of inflammatory cytokines, contributes to increased permeability of the blood-brain barrier (BBB), the potential for continued pathogen and immune cell invasion into the brain. Inflammatory response of the CNS is involved in recruitment of peripheral cells to the brain, which may promote glial cell hyper-activation and neuronal damage.

Abbreviations

AD

Alzheimer’s disease

BBB

Blood-brain barrier

CGRP

Calcitonin gene-related peptide

COX-2

Cyclooxygenase-2

DRG

Dorsal root ganglion

GG

Gasserian ganglion

iNOS

Inducible nitric oxide synthase

IP-10

IFN-β-induced protein 10

LPS

Lipopolysaccharide

MCP1

Monocyte chemotactic protein 1

M-CSF

Macrophage colony-stimulating factor

MHC

Major histocompatibility complex

MIF

Macrophage migration inhibitory factor

MIP-1-α

Chemokine macrophage inflammatory protein-1

MS

Multiple sclerosis

NF-ĸB

Nuclear factor kappa-light-chain-enhancer of activated B cells

OPG

Osteoprotegerin

PAMPs

Pathogen-associated molecular patterns

PD

Parkinson’s disease

PGE2

Prostaglandins E2

PKC

Protein kinase C

PRRs

Pattern recognition receptors

RAGE

Receptor for advanced glycation end products

RANK

Receptor activator of nuclear factor κB

RANKL

Receptor activator of nuclear factor κB ligand

RA-Rorγt

Retinoic acid-related orphan receptor γ thymus

SP

Substance P

STAT3

Signal transducer and activator of transcription-3

TLRs

Toll-like receptors

TMD

Temporomandibular disorders

TMJ

Temporomandibular joint

TRPV1

Transient receptor potential V1 receptor

VR1

Vanilloid receptor 1

References

  1. 1.
    Alomar X, Medrano J, Cabratosa J, Clavero JA, Lorente M, Serra I, Monill JM, Salvador A. Anatomy of the temporomandibular joint. Semin Ultrasound CT MR. 2007;28:170–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Bell WE. Clinical management of temporomandibular disorders. Chicago: Year Book; 1982.Google Scholar
  3. 3.
    Aleksandrowicz R, Ciszek B. Anatomia kliniczna głowy i szyi. Warszawa: PZWL; 2005.Google Scholar
  4. 4.
    Becser Andersen N, Bovim G, Sjaastad O. The frontotemporal peripheral nerves. Topographic variations of the supraorbital, supratrochlear and auriculotemporal nerves and their possible clinical significance. Surg Radiol Anatom. 2000;23:97–104p.CrossRefGoogle Scholar
  5. 5.
    Bochenek A, Reicher M. Nerw żuchwowy (V3). In: Łasiński W, editor. Anatomia człowieka. V Warszawa: PZWL; 2007. p. 98–207p.Google Scholar
  6. 6.
    Bourgery JM, Jacob NH. The atlas of anatomy and surgery. TASCHEN. 2008; 3 Hong Kong.Google Scholar
  7. 7.
    Gray H. The sphenopalatine ganglion and its branches. In: Pickering Pick T, Howden R, editors. Gray’s anatomy. Barnes Noble: New York; 1995. p. 713–717p.Google Scholar
  8. 8.
    Gülekon N, Anil A, Poyraz A, Peker T, Basri Turgut H, Karakose M. Variation in the anatomy of the auriculotemporal nerve. Clin Anatom. 2005;18:15–22.CrossRefGoogle Scholar
  9. 9.
    Komarnitki I, Andrzejczak-Sobocińska A, Tomczyk J, Deszczyńska K, Ciszek B. Clinical anatomy of the auriculotemporal nerve in the area of the infratemporal fossa. Folia Morphol (Warsz). 2012;71(3):187–193p.Google Scholar
  10. 10.
    Köpf-Maier P. Atlas of human anatomy. Warszawa: V PZWL; 2002.Google Scholar
  11. 11.
    Simmi S, Gayatri R, Rajesh S, Venkat RV. Unusual organization of auriculotemporal nerve and its clinical implications. J Oral Maxil Surg. 2009;67:448–50.CrossRefGoogle Scholar
  12. 12.
    Snell RS. Atlas of clinical anatomy. Boston: Little, Brown and Company; 1978.Google Scholar
  13. 13.
    Weber JC. Sekcja zwłok. Podręcznik Shearera. Warszawa: PZWL; 2000.Google Scholar
  14. 14.
    Yokochi C, Rohen JW, Weinreb EL. Fotograficzny atlas anatomii człowieka. Warszawa: PZWL; 2004.Google Scholar
  15. 15.
    Kopp S. Neuroendocrine, immune, and local responses related to temporomandibular disorders. J Orofac Pain. 2001;15(1):9–28.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Vernal R, Velasquez E, Gamonal J, Garcia-Sanz JA, Silva A, Sanz M. Expression of proinflammatory cytokines in osteoarthritis of the temporomandibular joint. Arch Oral Biol. 2008;53(10):910–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD41 effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaile JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Park H, Li ZX, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Barkhordarian A, Ajaj R, Ramchandani M, Demerjian D, Cayabyab R, Danaie S, et al. Osteoimmunopathology in HIV/AIDS: a translational evidence-based perspective. Path Res Int. 2011;2011:1–13.CrossRefGoogle Scholar
  21. 21.
    Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature. 2014;15:43–53.Google Scholar
  22. 22.
    Barkhordarian A, Thames A, Du AM, Jan AL, Nahcivan M, Nguyen M, et al. Viral immune surveillance: toward a TH17/TH9 gate to the central nervous system. Bioinformation. 2015;11(1):047–54.CrossRefGoogle Scholar
  23. 23.
    Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62. [PMID: 24362934].PubMedCrossRefGoogle Scholar
  24. 24.
    Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121:2402. [PMID: 23325835]PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Oluwadara O, Giacomelli L, Brant X, Christensen R, Avezova R, Kossan G, Chiappelli F. The role of the microenvironment in tumor immune surveillance. Bioinformation. 2011;5:285. [PMID: 21364836]PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. [PMID: 24669294]PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mills CD. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol. 2001;21:399. [PMID:11942557]PubMedCrossRefGoogle Scholar
  28. 28.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958. [PMID: 19029990]PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Alcendor DJ, Charest AM, Zhu WQ, Vigil HE, Knobel SM. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflam. 2012;9:95. [PMID: 22607552]CrossRefGoogle Scholar
  30. 30.
    Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20:131. [PMID: 10696506]PubMedCrossRefGoogle Scholar
  31. 31.
    Kamimura D, Yamada M, Harada M, Sabharwal L, Meng J, Bando H, et al. The gateway theory: bridging neural and immune interactions in the CNS. Front Neurosci. 2013;7:204. [PMID: 24194696].PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Arima Y, Kamimura D, Sabharwal L, Yamada M, Bando H, Ogura H, Atsumi T, Murakami M. Regulation of immune cell infiltration into the CNS by regional neural inputs explained by the gate theory. Mediators Inflamm. 2013;2013:898165. Aug 6 [PMID: 23990699]PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ogura H, Arima Y, Kamimura D, Murakami M. The gateway theory: how regional neural activation creates a gateway for immune cells via an inflammation amplifier. Biom J. 2013;36:269. [PMID: 24385068]Google Scholar
  34. 34.
    Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC. Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab. 2005;25:1634. [PMID:15931160]PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gee JM, Zierath D, Hadwin J, Savos A, Kalil A, Thullbery M, Becker KJ. Long term immunologic consequences of experimental stroke and mucosal tolerance. ExpTransl Stroke Med. 2009;1:3. [PMID:20142990]CrossRefGoogle Scholar
  36. 36.
    Zierath D, Thullbery M, Hadwin J, Gee JM, Savos A, Kalil A, Becker KJ. CNS immune responses following experimental stroke. Neurocrit Care. 2010;12:274. [PMID: 19714497]PubMedCrossRefGoogle Scholar
  37. 37.
    Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL. Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J Neurol Sci. 2005;233:125. [PMID: 15894335]PubMedCrossRefGoogle Scholar
  38. 38.
    Coutaux A, Adam F, Willer JC, Le Bars D. Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine. 2005;72(5):359–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Gibbs JL, Melnyk JL, Basbaum AI. Differential TRPV1 and TRPV2 channel expression in dental pulp. J Dent Res. 2011;90(6):765–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Henry MA, Hargreaves KM. Peripheral mechanisms of odontogenic pain. Dent Clin North Am. 2007;51(1):19–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Hucho T, Levine JD. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron. 2007;55(3):365–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Caviedes-Bucheli J, Munoz HR, Azuero-Holguın MM, Ulate E. Neuropeptides in dental pulp: the silent protagonists. J Endod. 2008;34(7):773–88.PubMedCrossRefGoogle Scholar
  43. 43.
    Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharm Exp Ther. 2002;302(3):839–45.CrossRefGoogle Scholar
  44. 44.
    Seybold VS. The role of peptides in central sensitization. Handb Exp Pharmacol. 2009;194:451–91.CrossRefGoogle Scholar
  45. 45.
    Harrison S, Geppetti P. Substance P. Int J Biochem Cell Biol. 2001;33(6):555–76.PubMedCrossRefGoogle Scholar
  46. 46.
    Lue LF, Kuo YM, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol. 2010;41:115–28.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cheng JK, Ji RR. Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res. 2008;33(10):1970–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398(6726):436–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Guo A, Vulchanova L, Wang J, Li X, Elde R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci. 1999;11(3):946–58.PubMedCrossRefGoogle Scholar
  50. 50.
    Ichikawa H, Sugimoto T. Vanilloid receptor 1-like receptor-immunoreactive primary sensory neurons in the rat trigeminal nervous system. Neuroscience. 2000;101(3):719–25.PubMedCrossRefGoogle Scholar
  51. 51.
    Snijdelaar DG, Dirksen R, Slappendel R, Crul BJP. Substance P. Eur J Pain. 2000;4(2):121–35.PubMedCrossRefGoogle Scholar
  52. 52.
    Boumechache M, Masin M, Edwardson J, Górecki D, Murrell-Lagnado R. Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells. J Biol Chem. 2009;284:13446–54. [PubMed: 19304656]PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bowles WR, Withrow JC, Lepinski AM, Hargreaves KM. Tissue levels of immunoreactive substance P are increased in patients with irreversible pulpitis. J Endod. 2003;29(4):265–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Bianchi M, Franchi S, Ferrario P, Sotgiu ML, Sacerdote P. Effects of the bisphosphonate ibandronate on hyperalgesia, substance P, and cytokine levels in a rat model of persistent inflammatory pain. Eur J Pain. 2008;12(3):284–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M. Substance P enhances NF-κB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am J Physiol. 2008;294(6):1586–96.CrossRefGoogle Scholar
  57. 57.
    Eriksson J, Bongenhielm U, Kidd E, Matthews B, Fried K. Distribution of P2X3 receptors in the rat trigeminal ganglion after inferior alveolar nerve injury. Neurosci Lett. 1998;254:37–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Levite M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol. 2008;8:460–71.PubMedCrossRefGoogle Scholar
  59. 59.
    Xiang X, Bo X, Burnstock G. Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett. 1998;256:105–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Ji RR. Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases. Curr Drug Targets Inflamm Allergy. 2004;3(3):299–303.PubMedCrossRefGoogle Scholar
  61. 61.
    Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, Wei F, Dubner R, Ren K. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27(22):6006–18.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kido M, Kiyoshima T, Kondo T, Ayasaka N, Moroi R, Terada Y, Tanaka T. Distribution of substance P and calcitonin gene-related peptide-like immunoreactive nerve fibers in the rat temporomandibular joint. J Dent Res. 1993;72:592–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Van Beek EM, Cochrane F, Barclay AN, van den Berg TK. Signal regulatory proteins in the immune system. J Immunol. 2005;175:7781–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Appelgren A, Appelgren B, Kopp S, Lundeberg T, Theodorsson E. Neuropeptides in the arthritic TMJ and symptoms and signs from the stomatognathic system with special considerations to rheumatoid arthritis. J Orofac Pain. 1995;9:215–25.PubMedGoogle Scholar
  65. 65.
    Appelgren A, Appelgren B, Kopp S, Lundeberg T, Theodorsson E. Relation between intra-articular temperature of the arthritic temporomandibular joint and presence of calcitonin gene-related peptide in the joint fluid. A clinical study. Acta Odontol Scand. 1993;51:285–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Cady R, Glenn JR, Smith KM, Durham PL. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization. Mol Pain. 2011;7:94.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Geppetti P, Del Bianco E, Patacchini R, Santicoli P, Maggi C, Tramontana M. Low pH-induced release of calcitonin gene-related peptide from capsaicin-sensitive sensory nerves; mechanism of action and biological response. Neuroscience. 1991;41:295–301.PubMedCrossRefGoogle Scholar
  68. 68.
    Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60(1):135–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Suter MR, Wen YR, Decosterd I, Ji RR. Do glial cells control pain? Neuron Glia Biol. 2007;3:255–68.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cherkas PS, Huang T-Y, Pannicke T, Tal M, Reichenbach A, Hanai M. The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain. 2004;110:290–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Ren K. Emerging role of astroglia in pain hypersensitivity. Jpn Dent Sci Rev. 2010;46:86.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Altieri DC, Edgington TS. A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD11b/CD18 (mac-1). J Immunol. 1988;141:2656–60.PubMedGoogle Scholar
  73. 73.
    Hickstein DD, Ozols J, Williams SA, Baenziger JU, Locksley RM, Roth GJ. Isolation and characterization of the receptor on human neutrophils that mediates cellular adherence. J Biol Chem. 1987;262:5576–80.PubMedGoogle Scholar
  74. 74.
    Takeda M, Tanimoto T, Ikeda M, Nasu M, Kadoi J, Shima Y, et al. Temporomandibular joint inflammation potentiates the excitabilities of trigeminal root ganglion neurons innervating the facial skin in rats. J Neurophysiol. 2005;93:2723–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Avitsur R, Pollak Y, Yirmiya R. Administration of interleukin-1 into the hypothalamus paraventricular nucleus induces febrile and behavioral effects. Neuroimmunomodulation. 1997;4:258–65.PubMedCrossRefGoogle Scholar
  76. 76.
    Xia Y, Krukoff TL. Cardiovascular responses to subseptic doses of endotoxin contribute to differential neuronal activation in rat brain. Brain Res Mol Brain Res. 2001;89:71–85.PubMedCrossRefGoogle Scholar
  77. 77.
    Bianchi M, Dib B, Paneral AE. Interleukin 1 and nociception in the rat. J Neurosci Res. 1998;53(6):645–50.PubMedCrossRefGoogle Scholar
  78. 78.
    Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;17:7303–11.CrossRefGoogle Scholar
  79. 79.
    Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRefGoogle Scholar
  80. 80.
    Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Lenertz LY, Gavala M, Hill LM, Bertics PJ. Cell signaling via the P2X(7) nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal. 2009;5:175–87. [PubMed:19263245]PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Schwartz M, Butovsky O, Bruck W, Hanisch UK. Microglial phenotype: is the commitment reversible? Trends Neurosci. 2006;29:68–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9:429–247.PubMedCrossRefGoogle Scholar
  84. 84.
    Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4(4):399–418.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Streit WJ, Miller KR, Lopes KO, Njie E. Microglial degeneration in the aging brain—bad news for neurons? Front Biosci. 2008;13:3423–38.PubMedCrossRefGoogle Scholar
  86. 86.
    Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging. 2012;33:195.e1–195.e12.CrossRefGoogle Scholar
  87. 87.
    Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 2007;55:412–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Xie Z, Morgan TE, Rozovsky I, Finch CE. Aging and glial responses to lipopolysaccharide in vitro: greater induction of IL- 1 and IL-6, but smaller induction of neurotoxicity. Exp Neurol. 2003;182:135–41.PubMedCrossRefGoogle Scholar
  89. 89.
    Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007;7:161–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Yong VW, Rivest S. Taking advantage of the systemic immune system to cure brain diseases. Neuron. 2009;64:55–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Perry VH, Andersson PB. The inflammatory response in the CNS. Neuropathol Appl Neurobiol. 1992;18:454–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol. 2011;186:4973–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132:288–95.PubMedCrossRefGoogle Scholar
  95. 95.
    Li L, Lu J, Tay SS, Moochhala SM, He BP. The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res. 2007;1159:8–17.PubMedCrossRefGoogle Scholar
  96. 96.
    Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience. 2009;158:1030–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6:193–201.PubMedCrossRefGoogle Scholar
  99. 99.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90.PubMedCrossRefGoogle Scholar
  102. 102.
    Cuadros MA, Navascués J. The origin and differentiation of microglial cells during development. Prog Neurobiol. 1998;56(2):173–89.PubMedCrossRefGoogle Scholar
  103. 103.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science. 2000;290:1768–71.PubMedCrossRefGoogle Scholar
  105. 105.
    Koning N, Bo L, Hoek RM, Huitinga I. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol. 2007;62:504–14.PubMedCrossRefGoogle Scholar
  106. 106.
    Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC II and pivotal proinflammatory genes in normal brain aging. Neurobiol Aging. 2006;27:717–22.PubMedCrossRefGoogle Scholar
  107. 107.
    Wang XJ, Ye M, Zhang YH, Chen SD. CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol. 2007;2:259–64.PubMedCrossRefGoogle Scholar
  108. 108.
    Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, et al. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging. 2011;32:2030–44.PubMedCrossRefGoogle Scholar
  109. 109.
    Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal on and off signals control microglia. Trends Neurosci. 2007;30:596–602.PubMedCrossRefGoogle Scholar
  110. 110.
    Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9:1512–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Inoue K. Microglial activation by purines and pyrimidines. Glia. 2002;40:156–63.PubMedCrossRefGoogle Scholar
  112. 112.
    Angiolillo D, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J. 2010;74:597–607. [PubMed: 20197627]PubMedCrossRefGoogle Scholar
  113. 113.
    Guile S, Alcaraz L, Birkinshaw T, Bowers K, Ebden M, Furber M, Stocks M. Antagonists of the P2X(7) receptor. From lead identification to drug development. J Med Chem. 2009;52:3123–41. [Pub Med: 19191585]PubMedCrossRefGoogle Scholar
  114. 114.
    Gunosewoyo H, Kassiou M. P2X purinergic receptor ligands: recently patented compounds. Expert Opin Ther Pat. 2010;20:625–46. [PubMed: 20205618]PubMedCrossRefGoogle Scholar
  115. 115.
    Aga M, Johnson CJ, Hart AP, Guadarrama AG, Suresh M, Svaren J, Bertics PJ, Darien BJ. Modulation of monocyte signaling and pore formation in response to agonists of the nucleotide receptor P2X(7). J Leukoc Biol. 2002;72:222–32. [PubMed: 12101284]PubMedGoogle Scholar
  116. 116.
    Bianco F, Colombo A, Saglietti L, Lecca D, Abbracchio M, Matteoli M, Verderio C. Different properties of P2X(7) receptor in hippocampal and cortical astrocytes. Purinergic Signal. 2009;5(2):233–40. [PubMed: 19280367]PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Grol MW, Panupinthu N, Korcok J, Sims SM, Dixon SJ. Expression, signaling, and function of P2X7 receptors in bone. Purinergic Signal. 2009;5:205–21. [PubMed:19224395]PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi O, Di Virgilio F. Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J Immunol. 1997;159:1451–8. [PubMed: 9233643]Google Scholar
  119. 119.
    Gavala ML, Hill LM, Lenertz LY, Karta MR, Bertics PJ. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells. J Biol Chem. 2010;285:34288–98. [PubMed: 20813842]PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Hill LM, Gavala ML, Lenertz LY, Bertics PJ. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 2010;185:3028–34. [PubMed: 20668222].PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA. Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem. 2001;276:125–32. [PubMed: 11016935]PubMedCrossRefGoogle Scholar
  122. 122.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli R, Curti A, Idzko M, Panther E, Di Virgilio F. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176(7):3877–83. [PubMed: 16547218]PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol. 2007;179:1913–25. [PubMed: 17641058].PubMedCrossRefGoogle Scholar
  124. 124.
    Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE. Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol. 1998;8:65–72. [PubMed:9458167].PubMedCrossRefGoogle Scholar
  125. 125.
    Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr. 2006;83:470S–4S. [PubMed: 16470015]PubMedCrossRefGoogle Scholar
  126. 126.
    Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem. 2003;278:13309–17. [PubMed: 12551918]PubMedCrossRefGoogle Scholar
  127. 127.
    Gavala ML, Pfeiffer ZA, Bertics PJ. The nucleotide receptor P2RX7 mediates ATP-induced CREB activation in human and murine monocytic cells. J Leukoc Biol. 2008;84:1159–71. [PubMed:18625910]PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K. Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem. 2009;108:115–25. [PubMed: 19014371]PubMedCrossRefGoogle Scholar
  129. 129.
    Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG. Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J. 2009;23:1685–93. [PubMed: 19211924]PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 50-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112(2):358–404.PubMedCrossRefGoogle Scholar
  131. 131.
    Di Virgilio F. The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today. 1995;16:524–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Surprenant RF, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996;272:735–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Dinarello CA. The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002;20(5 Suppl 27):S1–13.PubMedGoogle Scholar
  134. 134.
    Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117:561–74.PubMedCrossRefGoogle Scholar
  135. 135.
    Deveraux QL, Leo E, Stennick HR, Weish K, Salvensen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 1999;18(19):5242–51.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Faustin B, Latique L, Bruey JM, Luciano F, Sergienco E, Baily-Maitre B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–72.PubMedCrossRefGoogle Scholar
  137. 137.
    Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440(7081):233–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32.PubMedCrossRefGoogle Scholar
  139. 139.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.PubMedCrossRefGoogle Scholar
  140. 140.
    Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14:10–22.PubMedCrossRefGoogle Scholar
  141. 141.
    Cain K, Langlais C, Sun XM, Brown DG, Cohen GM. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem. 2001;276(45):41985–90.PubMedCrossRefGoogle Scholar
  142. 142.
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430:213–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Sanz JM, Di Virgilio F. Kinetics and mechanism of ATP- dependent IL-1b release from microglial cells. J Immunol. 2000;164:4893–489.PubMedCrossRefGoogle Scholar
  144. 144.
    Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39–44.PubMedCrossRefGoogle Scholar
  145. 145.
    Ogura Y, Sulterwala FS, Flavel RA. The inflammasome: first line of the immune response to cell stress. Cell. 2006;126:659–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Stojanov S, Kastner DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol. 2005;17:586–99.PubMedCrossRefGoogle Scholar
  147. 147.
    Prod’homme T, Weber MS, Steinman L, Zamvil SS. A neuropeptide in immune-mediated inflammation, Y? Trends Immunol. 2006;27:164–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA. Catecholamines-crafty weapons in the inflammatory arsenal of immune/ inflammatory cells or opening Pandora’s box? Mol Med. 2008;14:195–204.PubMedGoogle Scholar
  149. 149.
    Men DS, Matsui Y. Peripheral nerve stimulation increases serotonin and dopamine metabolites in rat spinal cord. Brain Res Bull. 1994;33:625–32.PubMedCrossRefGoogle Scholar
  150. 150.
    Sorkin LS, McAdoo DJ. Amino acids and serotonin are released into the lumbar spinal cord of the anesthetized cat following intradermal capsaicin injections. Brain Res. 1993;607(1–2):89–98.PubMedCrossRefGoogle Scholar
  151. 151.
    Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108–12.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Haxhinasto S, Mathis D, Benoist C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 2008;205:565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal. 2008;1(39):ra6.PubMedCrossRefGoogle Scholar
  156. 156.
    Burnstock G. Purinergic signalling. Br J Pharmacol. 2006;147(Suppl 1):172–81.Google Scholar
  157. 157.
    Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal. 2010;3:re1.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of toll-like receptor signaling. Immunity. 2006;26:433–43.CrossRefGoogle Scholar
  159. 159.
    MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. Rapid secretion of interleukin-1b by microvesicle shedding. Immunity. 2001;15:825–35.PubMedCrossRefGoogle Scholar
  160. 160.
    Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA. ATP acts as an agonist to promote stimulus-induced secretion of IL-1b and IL-18 in human blood. J Immunol. 2000;165:4615–23.PubMedCrossRefGoogle Scholar
  161. 161.
    Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol. 2009;39:948–55.PubMedCrossRefGoogle Scholar
  162. 162.
    Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci. 2009;106:1903–190.PubMedCrossRefGoogle Scholar
  163. 163.
    Lathrop SK, Santacruz NA, Pham D, Luo J, Hsieh CS. Antigen specific peripheral shaping of the natural regulatory T cell population. J Exp Med. 2008;205:3105–17.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S. Preferential generation of follicular B helper T cell from Fox3+ T cells in gut Peyer’s patches. Science. 2009;323:488–1492.CrossRefGoogle Scholar
  165. 165.
    Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009;30:44–56.CrossRefGoogle Scholar
  166. 166.
    Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, et al. ATP inhibits the generation of function of regulatory T cells through the activation of purinergic P2X receptors. J Immunol. 2011;4:62.Google Scholar
  167. 167.
    Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzschke O, Falk K. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–32.PubMedCrossRefGoogle Scholar
  168. 168.
    Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol. 2006;177(10):6780–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, Feng XH, Jetten AM, Dong C. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29:44–56.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Markwardt F, Lohn M, Böhm T, Klapperstück M. Purinoceptor-operated cationic channels in human B lymphocytes. J Physiol. 1997;498:143–51.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Placido R, Auricchio G, Falzoni S, Battistini L, Colizzi V, Brunetti E, et al. P2X(7) purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with mycobacterium tuberculosis reducing the intracellular bacterial viability. Cell Immunol. 2006;244:10–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Ferrari D, Idzko M, Dichmann S, Purlis D, Virchow C, Norgauer J, et al. P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett. 2000;486(3):217–24.PubMedCrossRefGoogle Scholar
  173. 173.
    Ferrari D, La Sala A, Chiozzi P, Morelli A, Falzoni S, Girolomoni G, et al. The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J. 2000;14(15):2466–76.PubMedCrossRefGoogle Scholar
  174. 174.
    Trabanelli S, Ocadlikova D, Gulinelli S, Curti A, Salvestrini V, De Paula Vieira R, Idzko M, Di Virgilio F, Ferrari D, Lemoli RM. Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation. J Immunol. 2012;189:1303–10.PubMedCrossRefGoogle Scholar
  175. 175.
    Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B. The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol. 2001;166:7172–7.PubMedCrossRefGoogle Scholar
  176. 176.
    Balkow S, Heinz S, Schmidbauer P, Kolanus W, Holzmann B, Grabbe S, Laschinger M. LFA-1 activity state on dendritic cells regulates contact duration with T cells and promotes T-cell priming. Blood. 2010;116:1885–94.PubMedCrossRefGoogle Scholar
  177. 177.
    Rothlein R, Dustin ML, Marlin SD, Springer TA. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol. 1986;137:1270–4.PubMedGoogle Scholar
  178. 178.
    Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005;106:584–92.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Coutinho-Silva R, Persechini PM, Bisaggio RD, Perfettini JL, Neto AC, Kanellopoulos JM, et al. P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Phys. 1999;276(5Pt 1):C1139–47.CrossRefGoogle Scholar
  180. 180.
    Solini A, Santini E, Chimenti D, Chiozzi P, Pratesi F, Cuccato S, et al. Multiple P2X receptors are involved in the modulation of apoptosis in human mesangial cells: evidence for a role of P2X4. Am J Physiol Renal Physiol. 2007;292(5):F1537–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • André Barkhordarian
    • 1
    • 2
  • Francesco Chiappelli
    • 1
    • 2
  • G. Gary Demerjian
    • 1
    • 2
    • 3
    Email author
  1. 1.UCLA School of DentistryLos AngelesUSA
  2. 2.Evidence-Based Decisions Practice-Based Research NetworkLos AngelesUSA
  3. 3.Center for TMJ & Sleep TherapyGlendoraUSA

Personalised recommendations