Skip to main content

Local Directional Multi Radius Binary Pattern

Novel Descriptor for Face Recognition Application

  • Conference paper
  • First Online:
Proceedings of the Ninth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2017) (SoCPaR 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 737))

Included in the following conference series:

Abstract

Face recognition becomes an important task performed routinely in our daily lives. This application is encouraged by the wide availability of powerful and low-cost desktop and embedded computing systems, while the need comes from the integration in too much real world systems including biometric authentication, surveillance, human-computer interaction, and multimedia management. This article proposes a new variant of LBP descriptor referred as Local Directional Multi Radius Binary Pattern (LDMRBP) as a robust and effective face descriptor. The proposed LDMRBP operator is built using new neighborhood topology and new pattern encoding scheme. The adopted face recognition system consists of three stages: (1) face detection and alignment to normalize the input images to a common form if needed; (2) feature extraction using the proposed descriptor in order to calculate the histogram, which represents the feature vector and (3) face recognition through a supervised image classification task using the simple K-Nearest Neighbors classifier. Simulated experiments on ORL, YALE and FERET under different illumination or facial expression conditions indicate that the proposed method outperforms other texture descriptors and other existing works of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15, 3608–3614 (2006)

    Article  Google Scholar 

  2. Wang, X., Li, Z., Tao, D.: Subspaces indexing model on grassmann manifold for image search. IEEE Trans. Image Process. 20, 2627–2635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2454–2466 (2012)

    Article  Google Scholar 

  4. Lu, J., Liong, V., Zhou, X., Zhou, J.: Learning compact binary face descriptor for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2041–2056 (2015)

    Article  Google Scholar 

  5. Pentland, M.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1993)

    Google Scholar 

  6. Srinivasa, P.R., Chandra, M.P.V.S.S.R.: Dimensionality reduced local directional pattern (DR-LDP) for face recognition. Expert Syst. Appl. 63, 66–73 (2016)

    Article  Google Scholar 

  7. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  8. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jabid, T., Kabir, M., Chae, O.: Local directional pattern (LDP) for face recognition. In: 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE), pp. 329–330 (2010)

    Google Scholar 

  10. Kaya, Y., Ertuğrul, Ö., Tekin, R.: Two novel local binary pattern descriptors for texture analysis. Appl. Soft Comput. 34, 728–735 (2015)

    Article  Google Scholar 

  11. Fernández, A., Álvarez, M., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49, 1177–1184 (2011)

    Article  Google Scholar 

  12. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, B., Zhang, L., Zhang, D., Shen, L.: Directional binary code with application to PolyU near-infrared face database. Pattern Recogn. Lett. 31, 2337–2344 (2010)

    Article  Google Scholar 

  14. Ylioinas, J., Hadid, A., Guo, Y., Pietikäinen, M.: Efficient image appearance description using dense sampling based local binary patterns. In: Asian Conference on Computer Vision, pp. 375–388 (2012)

    Google Scholar 

  15. Mehta, R., Egiazarian, K.: Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn. Lett. 71, 16–22 (2016)

    Article  Google Scholar 

  16. Fernández, A., Álvarez, M., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imaging Vis. 45, 76–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a local binary patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37, 7888–7894 (2010)

    Article  Google Scholar 

  18. Rivera, A., Castillo, J., Chae, O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22, 1740–1752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, Y., Wang, R.-G., Wang, W.-M., Gao, W.: Local quantization code histogram for texture classification. Neurocomputing 207, 354–364 (2016)

    Article  Google Scholar 

  20. Vipparthi, S., Murala, S., Nagar, S., Gonde, A.: Local gabor maximum edge position octal patterns for image retrieval. Neurocomputing 167, 336–345 (2015)

    Article  Google Scholar 

  21. Sun, J., Fan, G., Yu, L., Wu, X.: Concave-convex local binary features for automatic target recognition in infrared imagery. EURASIP J. Image Video Process. 2014, 1–13 (2014)

    Article  Google Scholar 

  22. Zeng, H., Chen, J., Cui, X., Cai, C., Ma, K.-K.: Quad binary pattern and its application in mean-shift tracking. Neurocomputing 217, 3–10 (2016)

    Article  Google Scholar 

  23. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1705–1720 (2010)

    Article  Google Scholar 

  24. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142 (1994)

    Google Scholar 

  25. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  26. Huang, P., Gao, G., Qian, C., Yang, G., Yang, Z.: Fuzzy linear regression discriminant projection for face recognition. IEEE Access PP, 1 (2017)

    Google Scholar 

  27. Liu, T., Mi, J.-X., Liu, Y., Li, C.: Robust face recognition via sparse boosting representation. Neurocomputing 214, 944–957 (2016)

    Article  Google Scholar 

  28. Yang, W., Wang, Z., Zhang, B.: Face recognition using adaptive local ternary patterns method. Neurocomputing 213, 183–190 (2016). Binary Representation Learning in Computer Vision

    Article  Google Scholar 

  29. Atta, R., Ghanbari, M.: An efficient face recognition system based on embedded DCT pyramid. IEEE Trans. Consum. Electron. 58, 1285–1293 (2012)

    Article  Google Scholar 

  30. Huang, S., Yang, J.: Linear discriminant regression classification for face recognition. IEEE Signal Process. Lett. 20, 91–94 (2013)

    Article  Google Scholar 

  31. Li, L., Gao, J., Ge, H.: A new face recognition method via semi-discrete decomposition for one sample problem. Optik-Int. J. Light Electron Opt. 127, 7408–7417 (2016)

    Article  Google Scholar 

  32. Huang, S., Zhuang, L.: Exponential discriminant locality preserving projection for face recognition. Neurocomputing 208, 373–377 (2016)

    Article  Google Scholar 

  33. Belahcene, M., Laid, M., Chouchane, A., Ouamane, A., Bourennane, S.: Local descriptors and tensor local preserving projection in face recognition. In: 2016 6th European Workshop on Visual Information Processing (EUVIP), pp. 1–6, October 2016

    Google Scholar 

  34. Pan, J., Wang, X., Cheng, Y.: Single-sample face recognition based on LPP feature transfer. IEEE Access 4, 2873–2884 (2016)

    Article  Google Scholar 

  35. Ghinea, G., Kannan, R., Kannaiyan, S.: Gradient-orientation-based PCA subspace for novel face recognition. IEEE Access 2, 914–920 (2014)

    Article  Google Scholar 

  36. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kas, M., El Merabet, Y., Ruichek, Y., Messoussi, R. (2018). Local Directional Multi Radius Binary Pattern. In: Abraham, A., Haqiq, A., Muda, A., Gandhi, N. (eds) Proceedings of the Ninth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2017). SoCPaR 2017. Advances in Intelligent Systems and Computing, vol 737. Springer, Cham. https://doi.org/10.1007/978-3-319-76357-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76357-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76356-9

  • Online ISBN: 978-3-319-76357-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics