Abstract
Face recognition becomes an important task performed routinely in our daily lives. This application is encouraged by the wide availability of powerful and low-cost desktop and embedded computing systems, while the need comes from the integration in too much real world systems including biometric authentication, surveillance, human-computer interaction, and multimedia management. This article proposes a new variant of LBP descriptor referred as Local Directional Multi Radius Binary Pattern (LDMRBP) as a robust and effective face descriptor. The proposed LDMRBP operator is built using new neighborhood topology and new pattern encoding scheme. The adopted face recognition system consists of three stages: (1) face detection and alignment to normalize the input images to a common form if needed; (2) feature extraction using the proposed descriptor in order to calculate the histogram, which represents the feature vector and (3) face recognition through a supervised image classification task using the simple K-Nearest Neighbors classifier. Simulated experiments on ORL, YALE and FERET under different illumination or facial expression conditions indicate that the proposed method outperforms other texture descriptors and other existing works of the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15, 3608–3614 (2006)
Wang, X., Li, Z., Tao, D.: Subspaces indexing model on grassmann manifold for image search. IEEE Trans. Image Process. 20, 2627–2635 (2011)
Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2454–2466 (2012)
Lu, J., Liong, V., Zhou, X., Zhou, J.: Learning compact binary face descriptor for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2041–2056 (2015)
Pentland, M.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1993)
Srinivasa, P.R., Chandra, M.P.V.S.S.R.: Dimensionality reduced local directional pattern (DR-LDP) for face recognition. Expert Syst. Appl. 63, 66–73 (2016)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)
Jabid, T., Kabir, M., Chae, O.: Local directional pattern (LDP) for face recognition. In: 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE), pp. 329–330 (2010)
Kaya, Y., Ertuğrul, Ö., Tekin, R.: Two novel local binary pattern descriptors for texture analysis. Appl. Soft Comput. 34, 728–735 (2015)
Fernández, A., Álvarez, M., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49, 1177–1184 (2011)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)
Zhang, B., Zhang, L., Zhang, D., Shen, L.: Directional binary code with application to PolyU near-infrared face database. Pattern Recogn. Lett. 31, 2337–2344 (2010)
Ylioinas, J., Hadid, A., Guo, Y., Pietikäinen, M.: Efficient image appearance description using dense sampling based local binary patterns. In: Asian Conference on Computer Vision, pp. 375–388 (2012)
Mehta, R., Egiazarian, K.: Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn. Lett. 71, 16–22 (2016)
Fernández, A., Álvarez, M., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imaging Vis. 45, 76–102 (2013)
Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a local binary patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37, 7888–7894 (2010)
Rivera, A., Castillo, J., Chae, O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22, 1740–1752 (2013)
Zhao, Y., Wang, R.-G., Wang, W.-M., Gao, W.: Local quantization code histogram for texture classification. Neurocomputing 207, 354–364 (2016)
Vipparthi, S., Murala, S., Nagar, S., Gonde, A.: Local gabor maximum edge position octal patterns for image retrieval. Neurocomputing 167, 336–345 (2015)
Sun, J., Fan, G., Yu, L., Wu, X.: Concave-convex local binary features for automatic target recognition in infrared imagery. EURASIP J. Image Video Process. 2014, 1–13 (2014)
Zeng, H., Chen, J., Cui, X., Cai, C., Ma, K.-K.: Quad binary pattern and its application in mean-shift tracking. Neurocomputing 217, 3–10 (2016)
Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1705–1720 (2010)
Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142 (1994)
Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)
Huang, P., Gao, G., Qian, C., Yang, G., Yang, Z.: Fuzzy linear regression discriminant projection for face recognition. IEEE Access PP, 1 (2017)
Liu, T., Mi, J.-X., Liu, Y., Li, C.: Robust face recognition via sparse boosting representation. Neurocomputing 214, 944–957 (2016)
Yang, W., Wang, Z., Zhang, B.: Face recognition using adaptive local ternary patterns method. Neurocomputing 213, 183–190 (2016). Binary Representation Learning in Computer Vision
Atta, R., Ghanbari, M.: An efficient face recognition system based on embedded DCT pyramid. IEEE Trans. Consum. Electron. 58, 1285–1293 (2012)
Huang, S., Yang, J.: Linear discriminant regression classification for face recognition. IEEE Signal Process. Lett. 20, 91–94 (2013)
Li, L., Gao, J., Ge, H.: A new face recognition method via semi-discrete decomposition for one sample problem. Optik-Int. J. Light Electron Opt. 127, 7408–7417 (2016)
Huang, S., Zhuang, L.: Exponential discriminant locality preserving projection for face recognition. Neurocomputing 208, 373–377 (2016)
Belahcene, M., Laid, M., Chouchane, A., Ouamane, A., Bourennane, S.: Local descriptors and tensor local preserving projection in face recognition. In: 2016 6th European Workshop on Visual Information Processing (EUVIP), pp. 1–6, October 2016
Pan, J., Wang, X., Cheng, Y.: Single-sample face recognition based on LPP feature transfer. IEEE Access 4, 2873–2884 (2016)
Ghinea, G., Kannan, R., Kannaiyan, S.: Gradient-orientation-based PCA subspace for novel face recognition. IEEE Access 2, 914–920 (2014)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Kas, M., El Merabet, Y., Ruichek, Y., Messoussi, R. (2018). Local Directional Multi Radius Binary Pattern. In: Abraham, A., Haqiq, A., Muda, A., Gandhi, N. (eds) Proceedings of the Ninth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2017). SoCPaR 2017. Advances in Intelligent Systems and Computing, vol 737. Springer, Cham. https://doi.org/10.1007/978-3-319-76357-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-76357-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76356-9
Online ISBN: 978-3-319-76357-6
eBook Packages: EngineeringEngineering (R0)