Advertisement

Use of Cellular Automata to Predict Deforestation in Queretaro

  • Lourdes Margain
  • Alberto Ochoa
  • Lissette Martínez Almaguer
  • Rigoberto Velázquez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 734)

Abstract

Developing countries such as México, commonly suffer high levels of deforestation. Forests disappear and hundreds of species disappear along with it. The UNAM institute of geography, estimates that every year over 500 thousand hectares of forest and rain forest are lost. Which places Mexico in the 5th place in world deforestation. [1] It’s important to find the definitive factors that influence deforestation, their discovery is key to help promote conservation and reforestation. The aim of use of cellular automata in this work, is to simulate deforestation processes and in the analysis of these factors. In this article, the objective is to use cellular automata to model deforestation. This will allow to determine endangered areas. The plan is to simulate an affected area, so that it can be visualized over time, the fading of the forest area and predict where the next area in danger will be.

Keywords

Deforestation Cellular automata Sierra gorda de querétaro 

References

  1. 1.
    Greenpeace: La deforestación y sus causas. Greenpeace México Web. http://www.greenpeace.org/mexico/es/Campanas/Bosques/La-deforestacion-y-sus-causas/. Accedido el 03 de abril de 2017
  2. 2.
    Naghdizadegan, M., Behifar, M., Mirbagheri, B.: Spatial deforestation modelling using cellular automata (case study: central zagros forests). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 22, 289–293 (2013). https://doi.org/10.5194/isprsarchives-xl-1-w3-289-2013 CrossRefGoogle Scholar
  3. 3.
    Rosas, B: La deforestación en México. México Social Web (2016). http://mexicosocial.org/index.php/secciones/especial/item/965-la-deforestacion-en-mexico. Accedido el 3 abril 2017
  4. 4.
    Secretaria de Medio Ambiente y Recursos Naturales: Colección de Inventarios Estatales Forestales y de Suelos 2013–2014 (2014)Google Scholar
  5. 5.
    Gutierrez Roa, J., Trejo López, O., Camacho Navarrete, S., Castillo Gutierrez, R., Cruz Ruiz, S., Castaneda, Gutierrez J.: Distrito Federal: Educación ambiental: caminos ecológicos. Editorial Limusa S.A. de C.V, Mexico (1999)Google Scholar
  6. 6.
    Karafyllidis, I., Adonios, T.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99(1), 87–97 (1997)CrossRefGoogle Scholar
  7. 7.
    QGIS Development Team: QGIS Geographic Information System. Open Source Geospatial Foundation Project (2017). http://www.qgis.org/
  8. 8.
    Congedo, L.: Semi-Automatic Classification Plugin Documentation (2016). http://dx.doi.org/10.13140/RG.2.2.29474.02242/1

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lourdes Margain
    • 1
  • Alberto Ochoa
    • 2
  • Lissette Martínez Almaguer
    • 3
  • Rigoberto Velázquez
    • 4
  1. 1.Universidad Politécnica de AguascalientesAguascalientesMexico
  2. 2.Maestría en Cómputo AplicadoUniversidad Autónoma de Ciudad JuárezCiudad JuárezMexico
  3. 3.Universidad de las Ciencias InformáticasHavanaCuba
  4. 4.Universidad Autónoma de SinaloaCuliacánMexico

Personalised recommendations