Skip to main content

Edge Detection for Cement Images Based on Interactive Genetic Algorithm

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 734)

Abstract

The cement is a type of cementious material which hydration is an extremely complex process. In order to research the evolution of particles during cement hydration, the particles should be differentiated from cement images. However, the existence of partial volume effect and similarity of intensity between different phases causes the boundaries of particles are not clear. Therefore, it is difficult for the traditional edge detection methods to differentiate the edges of the particles from cement microstructural images. In this paper, a method detecting edges for cement image based on interactive genetic algorithm (IGA) is proposed. The IGA utilizes human knowledge to evaluate the quality of evolved convolution templates to yield a better detector. Experimental results show that the method can accurately detect the edge for cement images.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76351-4_5
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76351-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Yoder, J.S., Hlavsa, M.C., Craun, G.F., Hill, R., Yu, P.A., Hicks, L.A., Alexander, N.T., Calderon, R.L., Roy, S.L., et al.: Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events – united states, 2005–2006. Morb. Mortal. Wkly Rep. 57(9), 1–38 (2008)

    Google Scholar 

  2. Huertas, A., Medioni, G.: Detection of intensity changes with subpixel accuracy using laplacian-gaussian masks. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986)

    CrossRef  Google Scholar 

  3. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circ. 23(2), 358–367 (1988)

    CrossRef  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  5. Gudmundsson, M., Elkwae, E.A., Kabuka, M.R.: Edge detection in medical images using a genetic algorithm. IEEE Trans. Med. Imaging 17(3), 469–474 (1998)

    CrossRef  Google Scholar 

  6. Wang, L., Yang, B., Wang, S., Liang, Z.: Building image feature kinetics for cement hydration using gene expression programming with similarity weight tournament selection. IEEE Trans. Evol. Comput. 19(5), 679–693 (2015)

    CrossRef  Google Scholar 

  7. Wang, L., Yang, B., Zhao, X.Y., Chen, Y.H., Chang, J.: Reverse extraction of early-age hydration kinetic equation from observed data of Portland cement. Sci. China Technol. Sci. 40(5), 582–595 (2010)

    Google Scholar 

  8. Jennings, H.M., Johnson, S.K.: Simulation of microstructure development during the hydration of a cement compound. J. Am. Ceram. Soc. 69(11), 790–795 (1986)

    CrossRef  Google Scholar 

  9. Ziqiang, Y., Liu, Y., Xiaohui, Y., Ken, Q.P.: Scalable distributed processing of k nearest neighbor queries over moving objects. IEEE Trans. Knowl. Data Eng. 27(5), 1383–1396 (2015)

    CrossRef  Google Scholar 

  10. Tongxing, L., Rogovchenko, Y.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288, 1150–1162 (2015)

    CrossRef  MathSciNet  Google Scholar 

  11. Cheng, H.D., Xianxing, J., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recogn. 34(12), 2259–2281 (2001)

    CrossRef  Google Scholar 

  12. Philip Chen, C.L., Zhulin, L.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 294–307 (2017). https://doi.org/10.1109/TNNLS.2017.2716952.

    CrossRef  MathSciNet  Google Scholar 

  13. Wang, L., Yang, B., Chen, Y.: Improving particle swarm optimization using multi-layer searching strategy. Inf. Sci. 274(8), 70–94 (2014)

    CrossRef  Google Scholar 

  14. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)

    CrossRef  Google Scholar 

  15. Zhao, X., Zhang, C., Li, X., Yang, B., Feng, Z.: Iga-based point cloud fitting using b-spline surfaces for reverse engineering. Inf. Sci. 245(10), 276–289 (2013)

    CrossRef  MathSciNet  Google Scholar 

  16. Zhao, X., Zhang, C., Yang, B., Li, P.: Adaptive knot placement using a gmm-based continuous optimization algorithm in b-spline curve approximation. Comput. Aided Des. 43(6), 598–604 (2011)

    CrossRef  Google Scholar 

  17. Zhou, J., Chen, L., Philip Chen, C.L., Zhang, Y., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)

    CrossRef  Google Scholar 

  18. Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2255–2267 (2017)

    CrossRef  MathSciNet  Google Scholar 

  19. Han, S.Y., Chen, Y.H., Tang, G.Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Franklin Inst. 354(12), 4719–4738 (2017)

    CrossRef  MathSciNet  Google Scholar 

  20. Vanegas, C.A., Aliaga, D.G., Benes, B., Waddell, P.: Interactive design of urban spaces using geometrical and behavioral modeling. Int. Conf. Comput. Graph. Interact. Tech. 28(5), 111 (2009)

    Google Scholar 

  21. Pedro, L.R., Takahashi, R.H.C.: Inspm: an interactive evolutionary multi-objective algorithm with preference model. Inf. Sci. 268, 202–219 (2014)

    CrossRef  Google Scholar 

  22. Bhandarkar, S.M., Zhang, Y., Potter, W.D.: An edge detection technique using genetic algorithm-based optimization. Pattern Recogn. 27(9), 1159–1180 (1994)

    CrossRef  Google Scholar 

  23. Lai, C.C., Chen, Y.C.: Color image retrieval based on interactive genetic algorithm, pp. 343–349 (2009)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China under Grant No. 61573166, No. 61572230, No. 81671785, No. 61373054, No. 61472164, No. 61472163, No. 61672262, No. 61640218. Shandong Provincial Natural Science Foundation, China, under Grant ZR2015JL025, ZR2014JL042. Science and technology project of Shandong Province under Grant No. 2015GGX101025. Project of Shandong Province Higher Educational Science and Technology Program under Grant no. J16LN07. Shandong Provincial Key R&D Program under Grant No. 2016ZDJS01A12, No.2016GGX101001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Wang or Bo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gao, G. et al. (2018). Edge Detection for Cement Images Based on Interactive Genetic Algorithm. In: Abraham, A., Muhuri, P., Muda, A., Gandhi, N. (eds) Hybrid Intelligent Systems. HIS 2017. Advances in Intelligent Systems and Computing, vol 734. Springer, Cham. https://doi.org/10.1007/978-3-319-76351-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76351-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76350-7

  • Online ISBN: 978-3-319-76351-4

  • eBook Packages: EngineeringEngineering (R0)