Advertisement

Multi Document Summarization Using Neuro-Fuzzy System

  • Muhammad Azhari
  • Yogan Jaya Kumar
  • Ong Sing Goh
  • Ngo Hea Choon
  • Aditya Pradana
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 734)

Abstract

With the abundance of data that can be accessed quickly now, it has become one of the difficulties for people to find specific information on the web. Many documents are available and it is not easy to read each and every document. As a result, the summary of the multiple texts need to be retrieved by taking the main content or just considering parts that interest the readers most. In this paper, we propose a summary of multi document using a Neuro-Fuzzy Inference System (ANFIS). This model can be trained to identify the most salient summary sentences from the document. We evaluate our proposed model with a current methodology that relied on fuzzy logic approach using ROUGE tool. ANFIS shows better results compared to other methods on the Document Understanding Conference (DUC) corpus.

Keywords

ANFIS Summarization ROUGE Multi-document 

Notes

Acknowledgements

This research work supported by Universiti Teknikal Malaysia Melaka (UTeM) and Ministry of Higher Education (MOHE), Malaysia Grant No. RAGS/1/2015/ICT02/FTMK/02/B00124.

References

  1. 1.
    Patil, M.P.D.: Text summarization using fuzzy logic. Int. J. Innov. Res. Adv. Eng. 1, 42–45 (2014)Google Scholar
  2. 2.
    Suanmali, L., Salim, N., Binwahlan, M.S.: Fuzzy logic based method for improving text summarization. Int. J. Comput. Sci. Inf. Secur. 2, 6 (2009)Google Scholar
  3. 3.
    Kyoomarsi, F., Khosravi, H., Eslami, E., Dehkordy, P.K., Tajoddin, A.: Optimizing text summarization based on fuzzy logic. In: Seventh IEEE/ACIS International Conference on Computer Information Science and Optimization, pp. 347–352 (2008)Google Scholar
  4. 4.
    Megala, S.S.: Enriching text summarization using fuzzy logic. Int. J. Comput. Sci. Inf. Technol. 5, 863–867 (2014)Google Scholar
  5. 5.
    Aik, L.E.: A study of neuro-fuzzy system in approximation-based problems. Neuro Fuzzy Syst. ANFIS Adapt. Neuro Fuzzy Infer. Syst. 24, 113–130 (2008)Google Scholar
  6. 6.
    Nauck, D.D.: Fuzzy data analysis with NEFCLASS 2. Fuzzy Data Anal. 0: 1413–1418Google Scholar
  7. 7.
    Albertos, P.: Fuzzy logic controllers. Methodology. Advantages and drawbacks. In: X Congreaso Espanol Sobre Technologias Y Logica Fuzzy, pp. 1–11 (1998)Google Scholar
  8. 8.
    Azhari, M., Kumar, Y.J.: Improving text summarization using neuro-fuzzy approach. J. Inf. Telecommun. 0, 1–13 (2017)Google Scholar
  9. 9.
    Kumar, Y.J., Kang, F., Goh, O., Khan, A.: Text summarization based on classification using ANFIS. Adv. Top. Intell. (2017)Google Scholar
  10. 10.
    Dixit, R.S., Apte, P.S.S.: Improvement of text summarization using fuzzy logic based method. IOSR J. Comput. Eng. 5, 5–10 (2012)CrossRefGoogle Scholar
  11. 11.
    Sarda, A.T., Kulkarni, A.R.: Text summarization using neural networks and rhetorical structure theory. Int. J. Adv. Res. Comput. Commun. Eng. 4, 49–52 (2015)Google Scholar
  12. 12.
    Binwahlan, M.S., Salim, N., Suanmali, L.: Fuzzy swarm based text summarization. J. Comput. Sci. 5, 338–346 (2009)CrossRefGoogle Scholar
  13. 13.
    Kumar, Y.J., Salim, N., Abuobieda, A., Tawfik, A.: Multi document summarization based on news components using fuzzy cross-document relations. Appl. Soft Comput. J. 21, 265–279 (2014)CrossRefGoogle Scholar
  14. 14.
    Babar, S.A., Patil, P.D.: Improving performance of text summarization. In: Procedia - Procedia Computer Science, pp. 354–363. Elsevier Masson SAS (2015)Google Scholar
  15. 15.
    Fattah, M.A.: Probabilistic neural network based text summarization. In: Natural Language Processing and Knowledge Engineering (2008)Google Scholar
  16. 16.
    Lin, C., Rey, M.: ROUGE: a package for automatic evaluation of summaries. In: Proceedings of Workshop on Text Summarization of ACL, Spain (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Azhari
    • 1
  • Yogan Jaya Kumar
    • 1
  • Ong Sing Goh
    • 1
  • Ngo Hea Choon
    • 1
  • Aditya Pradana
    • 1
  1. 1.Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia MelakaMelakaMalaysia

Personalised recommendations