Determining the Optimum Release Policy Through Differential Evolution: A Case Study of Mula Irrigation Project

  • Bilal
  • Millie Pant
  • Deepti Rani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)


The present study shows an implementation of Differential Evolution (DE) algorithm for determining the optimum flow policy for the reservoir operation. The case study is done for Mula Major Irrigation Project for river Mula (Godavari basin), Ahmednagar district, Maharashtra. The problem is formulated in terms of an unconstrained optimization model having 12 variables as the data collected is for one year.


Differential Evolution Reservoir operation Release Storage 


  1. 1.
    Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lakshminarasimman, L., Subramanian, S.: Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proceedings-Generation, Transmission and Distribution 153(6), 693–700 (2006)CrossRefGoogle Scholar
  3. 3.
    Reddy, M.J., Kumar, D.N.: Multiobjective differential evolution with application to reservoir system optimization. J. Comput. Civil Eng. 21(2), 136–146 (2007)CrossRefGoogle Scholar
  4. 4.
    Vasan, A., Raju, K.S.: Application of differential evolution for irrigation planning: an Indian case study. Water Resour. Manag. 21(8), 1393 (2007)CrossRefGoogle Scholar
  5. 5.
    Reddy, M.J., Kumar, D.N.: Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrig. Sci. 26(2), 177–190 (2008)CrossRefGoogle Scholar
  6. 6.
    Mandal, K.K., Chakraborty, N.: Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution. Energy Convers. Manag. 50(1), 97–104 (2009)CrossRefGoogle Scholar
  7. 7.
    Qin, H., et al.: Multi-objective cultured differential evolution for generating optimal trade-offs in reservoir flood control operation. Water Resour. Manag. 24(11), 2611–2632 (2010)CrossRefGoogle Scholar
  8. 8.
    Suribabu, C.R.: Differential evolution algorithm for optimal design of water distribution networks. J. Hydroinform. 12(1), 66–82 (2010)CrossRefGoogle Scholar
  9. 9.
    Adeyemo, J., Otieno, F.: Differential evolution algorithm for solving multi-objective crop planning model. Agric. Water Manag. 97(6), 848–856 (2010)CrossRefGoogle Scholar
  10. 10.
    Vasan, A., Simonovic, S.P.: Optimization of water distribution network design using differential evolution. J. Water Resour. Plan. Manag. 136(2), 279–287 (2010)CrossRefGoogle Scholar
  11. 11.
    Regulwar, D.G., Choudhari, S.A., Raj, P.A.: Differential evolution algorithm with application to optimal operation of multipurpose reservoir. J. Water Resour. Prot. 2(06), 560 (2010)CrossRefGoogle Scholar
  12. 12.
    Adeyemo, J.A.: Reservoir operation using multi-objective evolutionary algorithms-a review. Asian J. Sci. Res. 4(1), 16–27 (2011)CrossRefGoogle Scholar
  13. 13.
    Fallah-Mehdipour, E., Bozorg Haddad, O., Mariño, M.A.: Extraction of multicrop planning rules in a reservoir system: application of evolutionary algorithms. J. Irrig. Drain. Eng. 139(6), 490–498 (2012)CrossRefGoogle Scholar
  14. 14.
    Ahmad, A., et al.: Reservoir optimization in water resources: a review. Water Resour. Manag. 28(11), 3391–3405 (2014)CrossRefGoogle Scholar
  15. 15.
    Schardong, A., Simonovic, S.P.: Coupled self-adaptive multiobjective differential evolution and network flow algorithm approach for optimal reservoir operation. J. Water Resour. Plan. Manag. 141(10), 04015015 (2015)CrossRefGoogle Scholar
  16. 16.
    Ochoa, P., Castillo, O., Soria, J.: Fuzzy differential evolution method with dynamic parameter adaptation using type-2 fuzzy logic. In: 2016 IEEE 8th International Conference on Intelligent Systems (IS). IEEE (2016)Google Scholar
  17. 17.
    Ochoa, P., Castillo, O., Soria, J.: A new approach for dynamic mutation parameter in the differential evolution algorithm using fuzzy logic. In: North American Fuzzy Information Processing Society Annual Conference. Springer, Cham (2017)Google Scholar
  18. 18.
    Ochoa, P., Castillo, O., Soria, J.: Differential evolution using fuzzy logic and a comparative study with other metaheuristics. In: Nature-Inspired Design of Hybrid Intelligent Systems, pp. 257–268. Springer International Publishing, Cham (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Science and EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.National Institute of HydrologyRoorkeeIndia

Personalised recommendations