Design of Millimeter-Wave Microstrip Antenna Array for 5G Communications – A Comparative Study

  • Saswati Ghosh
  • Debarati Sen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)


Millimeter wave communication is found as a suitable technology for future 5G communications. The beamforming antenna is chosen to increase the link capacity considering the atmospheric losses at millimeter wave frequencies. This work compares the performance of different microstrip antenna arrays in terms of the return loss bandwidth, gain, half power beamwidth, side lobe level etc. The results are simulated using commercial electromagnetic software. A suitable array structure is suggested from the study.


5G communications Millimeter wave Microstrip antenna array 


  1. 1.
    FCC Document: Revision of part 15 of the commission’s rules. In: ET docket No. 07-113 regarding operation in the 57–64 GHz band, RM- 11104-report and order, 9 August 2013Google Scholar
  2. 2.
    Kutty, S., Sen, D.: Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutor. 18(2), 949–973 (2016)CrossRefGoogle Scholar
  3. 3.
    Kawakubo, A., Tokoro, S., Yamada, Y. et al.: Electronically scanning millimeter wave radar for forward objects detection. Soc. Automotive Eng., Warrendale, PA, SAE Technical Paper 2004-01-1122 (2004)Google Scholar
  4. 4.
    Singh, H., Jisung, O., et al.: A 60 GHz wireless network for enabling uncompressed video communication. IEEE Commun. Mag. 46(12), 71–78 (2008)CrossRefGoogle Scholar
  5. 5.
    Gilbert, J.M., Doan, C.H., et al.: A 4-Gbps uncompressed wireless HD A/V transceiver chipset. IEEE Micro 28(2), 56–64 (2008)CrossRefGoogle Scholar
  6. 6.
    Schwering, F.K.: Millimeter wave antennas. Proc. IEEE 80(1), 92–102 (1992)CrossRefGoogle Scholar
  7. 7.
    Albert, S.: Applications of MM wave microstrip antenna arrays. In: Proceedings on International Symposium on Signals, Systems and Electronics, ISSSE 2007, pp. 109–122. IEEE, Montreal (2007)Google Scholar
  8. 8.
    Schwering, F.K., Oliner, A.A.: Millimeter wave antennas. In: Lo, Y.T., Lee, S.W. (eds.) Antenna Handbook. Springer Science+Business Media, New York (1988)Google Scholar
  9. 9.
    Weiss, M.A.: Microstrip antennas for millimeter waves. IEEE Trans. Antennas Propag. 29(1), 171–174 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pitra, K., Raida, Z.: Planar millimeter-wave antennas: a comparative study. Radioengineering 20(1), 263–269 (2011)Google Scholar
  11. 11.
    Briqech, Z., Sebak, A.: Low cost 60 GHz printed yagi antenna array. In: IEEE International Symposium on Antennas and Propagation Society (APSURSI), Chicago, USA (2012)Google Scholar
  12. 12.
    Iizuka, H., Watanabe, T., et al.: Millimeter-wave microstrip array antenna for automotive radar. IEICE Trans. Commun. E86-B(9), 2728–2738 (2003)Google Scholar
  13. 13.
    Alavi, S. E., Soltanian, M. R. K. et al.: Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fraunthaul. Sci. Rep. 6, 19891 (2016). Nature Publishing GroupGoogle Scholar
  14. 14.
    Hayashi, Y., Sakakibara, K., et al.: Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure. IEEE Trans. Antennas Propag. 59(2), 398–406 (2011)CrossRefGoogle Scholar
  15. 15.
    Sakakibara, K., Sugawa, S. et al.: Millimeter-wave microstrip array antenna with matching-circuit-integrated radiating-elements for travelling-wave excitation. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, Barcelona (2010)Google Scholar
  16. 16.
    Sakakibara, K., Hayashi, Y. et al.: Two-dimensional array design techniques of millimeter-wave microstrip comb-line antenna array. Radio Sci. 43(RS4S25) (2008).
  17. 17.
    Tamijani, A.A., Sarabandi, K.: An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays. IEEE Trans. Antennas Propag. 51(9), 2193–2202 (2003)CrossRefGoogle Scholar
  18. 18.
    Mingjian, L., Luk, K.M.: Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Trans. Antennas Propag. 62(6), 3012–3018 (2014)CrossRefGoogle Scholar
  19. 19.
    Rida, A., Tentzeris, M. et al.: Design of low cost microstrip antenna arrays for mm-wave applications. In: IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, pp. 2071–2073 (2011)Google Scholar
  20. 20.
    Hu, C.N., Chang, D.C. et al.: Millimeter-wave microstrip antenna array design and an adaptive algorithm for future 5G wireless communication systems. Int. J. Antennas Propag. Hindawi Publ. Corp., 1–10 (2016). Article ID 7202143Google Scholar
  21. 21.
    Alam, M.S., Islam, M.T., et al.: A wideband microstrip patch antenna for 60 GHz wireless applications. Elektron. Elektrotech. 19(9), 65–70 (2013)Google Scholar
  22. 22.
    Zhang, J., Qiang, X., et al.: 5G millimeter-wave antenna array: design and challenges. IEEE Wirel. Commun. 24(2), 106–112 (2017)CrossRefGoogle Scholar
  23. 23.
    Balanis, C.A.: Antenna Theory – Analysis and Design, 3rd edn. Wiley, Hoboken (2005)Google Scholar
  24. 24.
    Ghalibafan, J., Attari, A.R., Kashani, F.H.: A new dual-band microstrip antenna with U-shaped slot. Prog. Electromagn. Res. C 12, 215–223 (2010)CrossRefGoogle Scholar
  25. 25.
    Xu, J., Wang, W.: A low cost elliptical dipole antenna array for 60 GHz applications. In: PIERS Proceedings, Taipei, pp. 1044–1047 (2013)Google Scholar
  26. 26.
    Wu, D., Tong, Z. et al.: A 76.5 GHz microstrip comb-line antenna array for automotive radar system. In: Proceedings of the Ninth European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, Lisbon (2015)Google Scholar
  27. 27.
    Sengupta, S., Jackson, D.R., et al.: A method for analyzing a linear series-fed rectangular microstrip antenna array. IEEE Trans. Antennas Propag. 63(8), 3731–3736 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rakesh, R.T., Chowdhary, A. et al.: A scalable subband subsampled radio architecture for millimeter wave communications. In: Proceedings of the 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Fundamentals and PHY. pp. 309–314. IEEE, Montreal (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.G. S. Sanyal School of TelecommunicationsIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations