Advertisement

Mining Gene Expression Data: Patterns Extraction for Gene Regulatory Networks

  • Manel Gouider
  • Ines Hamdi
  • Henda Ben Ghezala
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)

Abstract

Gene interaction modeling is a fundamental step in the understanding of cellular functions. The high throughput technologies (microarrays, …) generate a large volume of gene expression data. However, gene expression data mining is a very complex process, it becomes necessary to analyze these data to discover new knowledge about genes and their interactions in purpose to model the Gene Regulatory Network GRN.

In this paper, we compare some patterns extraction approaches used in the literature to infer Gene Regulatory Networks and we propose to use gradual patterns of the form (when A increases, B decreases) to extract knowledge about genes. Furthermore, we rely on GO Gene Ontology as a knowledge source to semantically annotate genes and to add information that can be useful in the process of knowledge extraction.

Keywords

Genetic interactions Knowledge extraction GRN Gene expression data GO Gradual patterns 

References

  1. 1.
    Gouider, M., Hamdi, I., Ben Ghezala, H.: A review: data mining and text mining tools in biological domain. In: Proceedings of the IBIMA 2016, 28th International Business Information Management Association (IBIMA), Sevilla, Spain, 9–10 November 2016, pp. 2737–2746 (2016). ISBN: 978-0-9860419-8-3Google Scholar
  2. 2.
    Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004)CrossRefGoogle Scholar
  3. 3.
    Ayadi, W., Elloumi, M.: Biclustering of microarray data. In: Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications. Wiley Book Series on Bioinformatics: Computational Techniques and Engineering, pp. 651–664 (2011)Google Scholar
  4. 4.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACMSIGMOD International Conference on Management of Data, pp. 207–216. ACM Press, Washington, DC (1993)Google Scholar
  5. 5.
    Datta, S., Bose, S.: Mining and ranking association rules in support, confidence, correlation, and dissociation framework. In: Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015, pp. 141–152. Springer, India (2016)Google Scholar
  6. 6.
    Huang, Z., Li, J., Su, H., et al.: Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decis. Support Syst. 43(4), 1207–1225 (2007)CrossRefGoogle Scholar
  7. 7.
    Carmona-Saez, P., Chagoyen, M., Rodriguez, A., et al.: Integrated analysis of gene expression by association rules discovery. BMC Bioinform. 7(1), 1 (2006)CrossRefGoogle Scholar
  8. 8.
    Alagukumar, S., Lawrance, R.: A Selective analysis of microarray data using association rule mining. Procedia Comput. Sci. 47, 3–12 (2015)CrossRefGoogle Scholar
  9. 9.
    Jourdan, L.: Métaheuristiques pour l’extraction de connaissances: Application à la génomique. Doctoral dissertation, Université des Sciences et Technologie de Lille-Lille I (2003)Google Scholar
  10. 10.
    Salle, P., Bringay, S., Teisseire, M.: Motifs Séquentiels Discriminants pour les puces ADN. In: InforSID’09: 27ème Congrès Informatique des organisations et systèmes d’information et de décision, pp. 397–412, May 2009Google Scholar
  11. 11.
    Kim, M., Shin, H., Chung, T.S., et al.: Extracting regulatory modules from gene expression data by sequential pattern mining. BMC Genomics 12(3), S5 (2011)CrossRefGoogle Scholar
  12. 12.
    Berzal, F., Cubero, J.C., Sanchez, D., Vila, M.A., Serrano, J.M.: An alternative approach to discover gradual dependencies. Int. J. Uncertain. Fuzziness Knowl. Based Syst. (IJUFKS) 15(5), 559–570 (2007)Google Scholar
  13. 13.
    Di Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from large databases. In: International Conference on Intelligent Data Analysis, IDA 2009 (2009)Google Scholar
  14. 14.
    Do, T.D.T., Laurent, A., Termier, A.: PGLCM: efficient parallel mining of closed frequent gradual itemsets. In: International Conference on Data Mining (ICDM), pp. 138–147 (2010)Google Scholar
  15. 15.
    Laurent, A., Negrevergne, B., Sicard, N. et al.: PGP-mc:: Towards a multicore parallel approach for mining gradual patterns. In: Database Systems for Advanced Applications, pp. 78–84. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Negrevergne, B., Termier, A., Rousset, M.-C., et al.: Paraminer: a generic pattern mining algorithm for multi-core architectures. Data Mining Knowl. Discov. 28(3), 593–633 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hullermeier, E.: Association rules for expressing gradual dependencies. In: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2002, pp. 200–211. Springer (2002)Google Scholar
  18. 18.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., et al.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3(1), 78 (2007)Google Scholar
  19. 19.
    Kaderali, L., Radde, N.: Inferring gene regulatory networks from expression data. In: Computational Intelligence in Bioinformatics, pp. 33–74. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Liu, F., Zhang, S.W., Guo, W.F., Wei, Z.G., Chen, L.: Inference of gene regulatory network based on local bayesian networks. PLoS Comput. Biol. 12(8), e1005024 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RIADI LaboratoryENSIManoubaTunisia

Personalised recommendations